Sensitivity of LES simulations to resolution, subgrid models and boundary conditions

Vladimír Fuka¹, Štěpán Nosek², Jelena Radović¹

vladimir.fuka@mff.cuni.cz

¹Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

²Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic

Idealized urban geometry

- •Based on Nosek et al., 2018 (Building and Environment 138)
- Selected layout A1 = pitched roof, equal height
- •Wind tunnel scale H = 62.5 mm, street width 50 mm
- •Detailed PIV and LDA wind-tunnel measurements available, including the turbulent scalar fluxes.

Detailed flow-field in the stret canyon

•ELMM had problems inside the street canyon particularly for pitched roofs with equal height. In older simulations at $\Delta z = H/20$ the vortex disappeared at the central plane. Despite of that scalar fluxes were simulated well.

The default LES setup

- In-house open source model ELMM
- •Immersed boundary method and uniform orthogonal grid
- •2nd order central discretization in space
- 3rd order Runge-Kutta in time
- •mixed-time-scale (MTS) subgrid model (Inagaki et al, 2005)

Periodic BC vs. turbulent inlet

• Periodic boundary conditions with increasing domain size. • Synthetic turbulence inflow, integral lengthscale varied. • Equal time averaging period 320 H/u*.

- •We used this test case for a sensitivity analysis.
- Small periodic domain with only one building block and one canyon.
- •Only points inside the canyon on the central plane compared with PIV. Tests:
- grid resolution
- •2nd order vs. 4th order discretization
- subgrid models

•LES vs. DNS with lower Reynolds number (Re = $H U_{1H}/\nu \doteq 1000$)

Setup	Discretization	RMSE U, W	HR U, W
Az U/25 MTS subarid model	2nd order		67/66
$\Delta Z = \Pi Z S$, IVITS Subgrid model		0.10/0.13	07 / 00
$\Delta z = H/50$, MTS subgrid model	2nd order	0.25 / 0.19	37 / 49
$\Delta z = H/100$, MTS subgrid model	2nd order	0.17 / 0.14	50 / 58
$\Delta z = H/50$, MTS subgrid model	4th order	0.25 / 0.20	37 / 44
$\Delta z = H/100$, MTS subgrid model	4th order	0.18 / 0.14	50 / 55
$\Delta z = H/50$, Vreman subgrid model	2nd order	0.25 / 0.19	38 / 46
$\Delta z = H/50$, sigma subgrid model	2nd order	0.26 / 0.20	36 / 49
$\Delta z = H/100$, DNS, lower Re	4th order	0.12/0.16	66 / 48
$\Delta z = H/40$, OpenFOAM,	2nd order	0.10 / 0.15	67 / 64
pimpleFoam, WALE sgs model			

(hit rate: relative error < 10% or absolute error < 0.05 m/s)

Velocity vectors interpolated to the PIV measurement points

The largest domain: a) layout, b) U at z = 0.4 H, c) U at z = 1.2 H

Synthetic turbulent inflow BC: a) U at z = 0.4 H, b) U at z = 1.2 H

Simulated streamwise velocity (*u*) C spectra at z = 2 H compared with PIV at z = 1.6 H. a) small domain, b) large domain, c) turbulent inflow.

OpenFOAM $\Delta z = H/40$

ELMM $\Delta z = H/100$ scalar C^*

•Despite having very incorrect results at H/20 we recieve very good correspondence at H/25, but for higher resolutions the results worsen.

- Reason not yet determined.
- Little dependence on the subgrid model.
- Small difference when changing discretization order.
- Difference between LES and DNS of a lower Reynolds noticeable.
- Scalar concentrations simulated, but yet to be compared systematically.

The work was funded by the Grant Agency of the Czech Republic, project 22-14608S "The role of coherent structures' dynamics on scalar transport and dispersion in urban canopy layer"

ELMM $\Delta z = H/100$.

21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 27-30 September 2022 | Aveiro, Portugal