

Assessment of model responses' sensitivity to emission changes in support of local emission reduction strategies: The FAIRMODE CT9 platform

Bertrand Bessagnet, Kees Cuvelier, Alexander de Meij, Alexandra Monteiro, Enrico Pisoni, Philippe Thunis, Angelos Violaris, Jonilda Kushta, Bruce R. Denby, Qing Mu, Eivind G. Wærsted, Marta García Vivanco, Mark R. Theobald, Victoria Gil, Ranjeet S Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar, Elissavet Bossioli, Georgia Methymaki, Darijo Brzoja, Velimir Milić, Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut, Gino Briganti, Mihaela Mircea, Claudia Flandorfer, Kathrin Baumann-Stanzer, Virginie Hutsemékers, Elke Trimpeneers

21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

27-30 September 2022 | Aveiro, Portugal

Active modelling participants (11 groups)

- > Alexander de Meij; METCLIM/JRC, Varese/Ispra, Italy
- Angelos Violaris, Jonilda Kushta; The Cyprus Institute, Climate and Atmosphere Research Center, Cyprus
- Bruce R. Denby, Qing Mu, Eivind G. Wærsted; Norwegian Meteorological Institute, Norway
- Marta García Vivanco, Mark R. Theobald, Victoria Gil; Atmospheric Modelling Unit. Environment Department, CIEMAT, Spain
- Ranjeet S Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar; Centre for Climate Change Research (C3R) and Centre for Atmospheric and Climate Physics (CACP), Department of Physics, Astronomy and Mathematics, University of Hertfordshire, United Kingdom
- Elissavet Bossioli, Georgia Methymaki; Department of Physics, Sector of Environmental Physics & Meteorology, National and Kapodistrian University of Athens, Greece

- Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut; Laboratoire de Météorologie Dynamique (LMD), Ecole Polytechnique, IPSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, CNRS, France
- Gino Briganti, Mihaela Mircea; ENEA National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
- Claudia Flandorfer, Kathrin Baumann-Stanzer; Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Austria
- Virginie Hutsemékers, Elke Trimpeneers; Belgian Interregional Environment Agency, Belgium
- Darijo Brzoja, Velimir Milić; Croatian Meteorological and Hydrological Service, Croatia

FAIRMODE CT9 OBJECTIVES

- For a given mitigation scenario (scen) and a base case (bc), models (M) provide different absolute results C^M_{scen}
- BUT, HOW DO THEY BEHAVE ON DELTAS?

 $\Delta = C_{scen}^M - C_{bc}^M$

Policy Implication: It is important to assess the robustness of deltas for urban air quality policies!

- What is the order of magnitude of differences? How to evaluate these differences? Which indicators?
- Can we explain the differences, what are the main drivers?

Models and teams involved - Overview

Constraints:

-Meteorology 2015

-Emission reductions 25 and 50%

-Target domains, periods (episodes)

Team name	- Country	Model Name
JRC	(EU)	EMEP
ZAMG	(AT)	WRF-Chem
Met Norway	(NO)	EMEP
Met Norway	(NO)	EMEP + uEMEP
Cyl	(CY)	WRF-Chem
NKUA	(GR)	WRF-Chem
DHMZ	(HR)	ADMS-Urban
DHMZ	(HR)	LOTOS-EUROS
LMD/IPSL	(FR)	WRF-CHIMEREv2020r1
UH-CACP	(UK)	WRF-CMAQ
CIEMAT	(ES)	IFS-CHIMEREv2017r4
ENEA	(IT)	WRF-MINNI
IRCELINE	(BE)	CHIMERE + RIO + ATMOSTREET

The overall framework

Set-up

- Short term (ST) on episodes
 - Emissions reduced only during 2015 episodes

from 00:00 to 23:00

- Long term (LT) simulations
 - Emissions reduced for the whole year 2015
- Two reductions so far:
 - 25% and 50% from a base case (BC)
- Reduced species depends on target pollutants
 - PM10: PPM, NOx, VOC, NH3, SO2, ALL (All together)
 - Ozone: NOx, VOC, ALL (All together)

The overall framework

Basis Indicators

> Absolute Potential defined as the reduction in μ g/m³ scaled by the reduction α of the scenario (25 or 50%) of a precursor from base case BC

• $APl = (C_{SCEN} - C_{BC})/(\alpha)$ ($APl \times \alpha$ is the delta of concentrations)

> Relative Potential defined as the reduction in % scaled by the reduction α of the scenario (25 or 50%) of precursor *n* from base case BC and by the BC concentrations.

• $RPl = (C_{SCEN} - C_{BC})/(\alpha \times C_{BC})$

Absolute Potency in µg/m³/(ton/day) defined as the derivative of the concentration with respect to the emissions density E of a precursor or in other words the rate with which the concentrations (*C*) will change as a result of an emission density E)

•
$$APy = (C_{SCEN} - C_{BC})/(\alpha \times E_{BC})$$

Absolute Potential for O3 for NOx reduction AbsPOTENTIAL50% Mean O3

NOX reduction (ST)

Absolute Potential for PM10 with ALL pollutant reductions

- > Variability for each indicator
 - IND = API, RPI, APY

Variability from models M assessed by Norm. Std. Dev.

$$VAR_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$$

Fest of linearity using the 50% and 25% runs. Deviation to linearity for API

European

> Test of additivity using the ALL scenarios and "ADD" as the sum of individual precursors reductions. **Deviation to** additivity for API, RPI $100 \times \left(\frac{IND_{ADD} - IND_{ALL}}{IND_{ALL}}\right)$

Results on variability

- Less variability on O3 BC Mean than PM10 BC Mean
 - 6% versus 22%
- Variability of indicators
 - Very high, depending on the indicator
 - Lower variability on Potency (PTY)

Variability from models M assessed by Norm. Std. Dev. $NSD_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$

Results on variability

- Less variability on O3 BC Mean than PM10 BC Mean
 - 6% versus 22%
- Variability of indicators
 - Very high, depending on the indicator
 - Lower variability on Potency (PTY)

Variability from models M assessed by Norm. Std. Dev. $NSD_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$

Linearity on PM10

Deviation=0% means perfect linearity

Conclusions

High variability of indicators observed in our first results

- > Larger variability on model responses to emission reduction than for absolute values!
- > Less variability between models for the Potency compare to Potential

Next steps

- ✓ FAIRMODE meeting in Oslo (18-20th October 2022)
- ✓ Rough analyses and paper I (presentation of the exercize)
- ✓ In depth work in sub groups on the impact of:
 - Resolution (CIEMAT, LMD, NKUA)
 - Chemistry (CIEMAT, NKUA)
 - Emissions on LT (Alexander de Meij METCLIM/JRC) \rightarrow Presentation by Kees Cuvelier
- ✓ Possible extention investigating the impact on threshold exceedances using observations
 - Impact at stations applying an absolute or relative delta

Other modelling groups are welcome!

Thank you for your attention

Linearity on O3 AbsPOTENTIAL(50%)/AbsPOTENTIAL(25%) Mean O3

FAIRMODE CT9 CONTEXT

- Many inter-comparison exercises of air quality models
- No recent exercises to assess the capacity of models to simulate "delta" (Formerly CityDelta, EURODELTA) particularly at more local sacle
- Need to have a long term inter-comparison <u>platform</u> to continually assess model responses

FAIRMODE CT9 CONTEXT

- Many inter-comparison exercises of air quality models
- No recent exercises to assess the capacity of models to simulate "delta" (Formerly CityDelta, EURODELTA) particularly at more local sacle
- Need to have a long term inter-comparison <u>platform</u> to continually assess model responses

- A Model Concentration Delta can be applied to an observation C_{obs} to evaluate a scenarios based on 'bc' reference and 'scen' simulations:
 - Absolute (for O3?): $C_{scen} = C_{obs} + \overline{(C_{scen}^M C_{bc}^M)}$
 - Relative (for NO2 or PM?): $C_{scen} = C_{obs} \times (C_{scen}^{M} C_{bc}^{M})/C_{bc}^{M}$

delta

• Techniques often used but rarely assessed

