

Modelling the impacts of urban trees on air quality in streets Alice MAISON 1,2 21st HARMO conference, Aveiro, Portugal HARMO2 27-30 September 2022

Co-authors: Karine SARTELET¹ & Youngseob KIM¹

 ¹ CEREA, École des Ponts, EDF R&D, Marne-la-Vallée, France
 ² UMR EcoSys, Université Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France

Introduction: air quality – modelling & urban trees

Cities

- dense populated areas
- local emissions
- air flow reduction by buildings inside streets
 → poor air quality & risk for human health

Modelling tools

- understand processes, interpret observations and forecast pollutant concentration evolutions
- various model resolutions

Urban trees

- ecosystem services : improve thermal comfort, limit runoff, store carbon, enhance well-being
- effects on air quality ?

Shade cooling surfaces and local

microdimate

Soil water &

nutrient uptake

Liveslev et

al., 2016)

Reduced impervious runoff

Introduction: tree effects on air quality

Regional & Local-scale modelling

Chemistry-transport models

- Resolution of ~ 1km
- Simulation over regions and cities Ex : CHIMERE, Polair3D ...
- => Background urban concentrations

Local-scale models

- Resolution of 1 to 100m
- Next to a road
- Street canyon
- Next to industrial sites/airports
- Model types:
- Statistical approach / Land Use Regression
- Parametric models: Gaussian (ADMS, ...), street canyon (MUNICH, ...)
- Computational Fluid Dynamics models (Code_Saturne ...)

2D view

3D view

How to simulate air quality at street level over a whole city?

5

→ Improve transport parametrization for treeless canyon & include tree aerodynamic effect not present in current street models

- \rightarrow Add **dry deposition** on tree leaves
- → Add **BVOC emissions**

Description of MUNICH (Model of Urban Network of Intersecting Canyons and Highways)

Hypothesis: homogeneous street segments (H, W, wind speed and concentrations) 6

PM_{2.5} concentrations simulated in Paris with MUNICH (streets) and Polair3D (CTM) (background) in 2014 (Lugon et al., 2021)

http://cerea.enpc.fr/munich

Street and tree characteristics

- 577 street segments located in the eastern suburbs of Paris (Kim et al., 2022)
- Trees are added in one street
- species = Sophora japonica (monoterpene emitter)
- 1 tree every 10m
- 24h-simulation of a warm summer day (18/07/2014)

Street characteristics	building height	8.6 m
	street width	27.5 m
	street length	1140 m
	aspect ratio	0.31
Tree characteristics	leaf area index (LAI)	9.0 m ² .m ⁻²
	crown height	8.0 m
	trunk height	3.0 m

5 simulations:

- **ref**: street without tree
- aero: only aerodynamic effect
- **dep**: only dry deposition on leaves
- **bvoc**: only BVOC emissions
- **3eff**: 3 cumulated effects

Modelling tree aerodynamic effect

- CFD simulations (Code_Saturne)
 - ightarrow 3 street canyons with various H/W ratios
 - ightarrow large range of tree characteristics (LAI, tree height and radius)

Modelling dry deposition on street and tree leaf surfaces

street ground

Modelling BVOC emissions

Daily temporal evolution of BVOC emissions for the whole street.

Results: comparison of tree effects on street concentrations

aerodynamic effect is predominant for species emitted by traffic (NO₂, BC, CO ...)
 → dispersion of pollutants is limited and they accumulate in the street

11

- dry deposition on leaves is not very important (< 1%)
- effect of BVOC emissions is limited at the street level in terms of particle mass

Results: complex interactions between physical processes and chemistry ¹²

Temporal evolution of NH_3 (a) and inorganic PM_{10} (b) concentrations in the street for the ref and aero simulations with and without condensation.

- aerodynamic effect is not visible on NH₃ concentrations because when condensation is activated:
 - \rightarrow NH₃ condensates to form ammonium nitrates and inorganic particles
 - \rightarrow aerodynamic effect is then visible on **inorganic PM**₁₀ concentrations
- formation of organic particles is also increased via org/inorg interactions

Conclusion

- A pluridisciplinary and multi-scale study that aims to include tree effects in air quality models:
 - parametrize **aerodynamic effect**
 - add gas and aerosol dry deposition on leaves
 - account for BVOC tree emissions
- At the **street level**
 - the **aerodynamic effect is predominant** for compounds emitted by traffic or reacting with those.
 - the dry deposition effect is low
 - the **BVOC emission effect is low in terms of particle mass**, but it could be higher:
 - for particle number concentration (formation of extremely-low volatile compounds at the street scale)
 - at the city level

Fig. 2. Links between urban trees and air quality.

Eisenman et al., 2019

Perspectives

- Link BVOC emissions to urban micro-climate and tree water status
- Account for the thermo-radiative effect of trees on street chemistry
 - → coupling air quality model to urban climate and soil-plant-atmosphere models

ightarrow using the city tree database

Compare simulation results to measurements

2.25

2.30

https://opendata.paris.fr/explore/dataset/les-arbres

NO₂ concentrations simulated in the streets of Paris with MUNICH (Lugon et al., 2020).

2.40

2.35

100.0, 116.7

[116.7, 133.3 [133.3, 150.0 [150.0, 166.7 [166.7, 200.0 [200.0~[

Thank you for your attention

alice.maison@enpc.fr

References

Baghi, R., Helmig, D., Guenther, A., Duhl, T., & Daly, R. (2012). Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions. *Biogeosciences*, 9(10), 3777–3785. <u>https://doi.org/10.5194/bg-9-3777-2012</u>

Barragán, R.C., Strojnik, M., Rodríguez-Rivas, A., Torales, G.G., González, F.J., "Optical spectral characterization of leaves for Quercus Resinosa and Magnolifolia species in two senescent states," Proc. SPIE 10765, Infrared Remote Sensing and Instrumentation XXVI, 1076511 (18 September 2018); https://doi.org/10.1117/12.2321710

Chérin, N., Roustan, Y., Musson-Genon, L., & Seigneur, C. (2015). Modelling atmospheric dry deposition in urban areas using an urban canopy approach. Geosci. Model Dev., 19.

Curtis, A. J., Helmig, D., Baroch, C., Daly, R., & Davis, S. (2014). Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program. *Atmospheric Environment*, *95*, 634–643. <u>https://doi.org/10.1016/j.atmosenv.2014.06.035</u>

Eisenman, T. S., Churkina, G., Jariwala, S. P., Kumar, P., Lovasi, G. S., Pataki, D. E., Weinberger, K. R., & Whitlow, T. H. (2019). Urban trees, air quality, and asthma: An interdisciplinary review. *Landscape and Urban Planning*, 187, 47–59. <u>https://doi.org/10.1016/j.landurbplan.2019.02.010</u>

Giardina, M., & Buffa, P. (2018). A new approach for modeling dry deposition velocity of particles. Atmospheric Environment, 180, 11–22. https://doi.org/10.1016/j.atmosenv.2018.02.038

Guenther, A. (2000). Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. *Atmospheric Environment*, 34(12–14), 2205–2230. <u>https://doi.org/10.1016/S1352-2310(99)00465-3</u>

Guenther, A., Baugh, B., Brasseur, G., Greenberg, J., Harley, P., Klinger, L., Serça, D., & Vierling, L. (1999). Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain. *Journal of Geophysical Research: Atmospheres*, 104(D23), 30625–30639. <u>https://doi.org/10.1029/1999JD900391</u>

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., & Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. *Journal of Geophysical Research*, *100*(D5), 8873. <u>https://doi.org/10.1029/94JD02950</u>

Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P., & Matt, D. R. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. *Water, Air, and Soil Pollution, 36*(3–4), 311–330. <u>https://doi.org/10.1007/BF00229675</u>

Katul, G. G., Mahrt, L., Poggi, D., & Sanz, C. (2004). ONE- and TWO-Equation Models for Canopy Turbulence. *Boundary-Layer Meteorology*, 113(1), 81–109.

Kim, Y., Wu, Y., Seigneur, C., & Roustan, Y. (2018). Multi-scale modeling of urban air pollution: Development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1). *Geoscientific Model Development*, *11*(2), 611–629. <u>https://doi.org/10.5194/gmd-11-611-2018</u>

Kim, Y., Lugon, L., Maison, A., Sarica, T., Roustan, Y., Valari, M., Zhang, Y., André, M., & Sartelet, K. (2022). MUNICH v2.0: A street-network model coupled with SSH-aerosol (v1.2) for multipollutant modelling [Preprint]. Geoscientific Model Development. <u>https://doi.org/10.5194/gmd-2022-26</u>

Lemonsu, A., Masson, V., Shashua-Bar, L., Erell, E., & Pearlmutter, D. (2012). Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas. *Geoscientific Model Development*, 5(6), 1377–1393. <u>https://doi.org/10.5194/gmd-5-1377-2012</u>

References

Lin, L., Yan, J., Ma, K., Zhou, W., Chen, G., Tang, R., & Zhang, Y. (2017). Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach. *Atmospheric Environment*, *171*, 59–69. <u>https://doi.org/10.1016/j.atmosenv.2017.09.012</u>

Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality, 45(1), 119–124. <u>https://doi.org/10.2134/jeq2015.11.0567</u>

Lugon, L., Sartelet, K., Kim, Y., Vigneron, J., & Chrétien, O. (2020). Nonstationary modeling of NO₂, NO and NOx in Paris using the Street-in-Grid model: Coupling local and regional scales with a two-way dynamic approach. *Atmospheric Chemistry and Physics*, 20(13), 7717–7740. <u>https://doi.org/10.5194/acp-20-7717-2020</u>

Lugon, L., Sartelet, K., Kim, Y., Vigneron, J., & Chrétien, O. (2021). Simulation of primary and secondary particles in the streets of Paris using MUNICH. *Faraday Discuss.*, 226(0), 432–456. https://doi.org/10.1039/D0FD00092B

Maison, A., Flageul, C., Carissimo, B., Tuzet, A., & Sartelet, K. (2022a). Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne. *Atmosphere*, 13(4), 527. <u>https://doi.org/10.3390/atmos13040527</u>

Maison, A., Flageul, C., Carissimo, B., Wang, Y., Tuzet, A., & Sartelet, K. (2022b). Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne. *Atmospheric Chemistry and Physics*, 22(14), 9369–9388. <u>https://doi.org/10.5194/acp-22-9369-2022</u>

Masson, V. (2000). A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. *Boundary-Layer Meteorology*, 94(3), 357–397. https://doi.org/10.1023/A:1002463829265

Owen, S. M., Boissard, C., & Hewitt, C. N. (2001). Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. *Atmospheric Environment*, 17.

Redon, E. C., Lemonsu, A., Masson, V., Morille, B., & Musy, M. (2017). Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0. *Geoscientific Model Development*, 10(1), 385–411. <u>https://doi.org/10.5194/gmd-10-385-2017</u>

Redon, E., Lemonsu, A., & Masson, V. (2020). An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0). *Geoscientific Model Development*, *13*(2), 385–399. <u>https://doi.org/10.5194/gmd-13-385-2020</u>

Sartelet, K., Couvidat, F., Wang, Z., Flageul, C., & Kim, Y. (2020). SSH-Aerosol v1.1: A Modular Box Model to Simulate the Evolution of Primary and Secondary Aerosols. *Atmosphere*, *11*(5), 525. <u>https://doi.org/10.3390/atmos11050525</u>

Soulhac, L., Salizzoni, P., Cierco, F.-X., & Perkins, R. (2011). The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. *Atmospheric Environment*, 45(39), 7379–7395. <u>https://doi.org/10.1016/j.atmosenv.2011.07.008</u>

Tuzet, A., Granier, A., Betsch, P., Peiffer, M., & Perrier, A. (2017). Modelling hydraulic functioning of an adult beech stand under non-limiting soil water and severe drought condition. *Ecological Modelling*, *348*, 56–77. <u>https://doi.org/10.1016/j.ecolmodel.2017.01.007</u>

References

Venkatram, A., & Pleim, J. (1999). The electrical analogy does not apply to modeling dry deposition of particles. *Atmospheric Environment*, 33(18), 3075–3076. <u>https://doi.org/10.1016/S1352-2310(99)00094-1</u>

Vos, P. E. J., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? *Environmental Pollution*, 183, 113–122.

Walmsley, J. L., & Wesely, M. L. (1996). Modification of coded parametrizations of surface resistances to gaseous dry deposition. *Atmospheric Environment*, 30(7), 1181–1188. https://doi.org/10.1016/1352-2310(95)00403-3

Wesely, M. L. (1987). Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. *Atmospheric Environment*, 23(6), 1293–1304.

Yarwood, G., Rao, S., Yocke, M., and Whitten, G., 2005: Updates to the carbon bond chemical mechanism: CB05. US EPA Final Report, 161 pp.

Zaïdi, H., Dupont, E., Milliez, M., Musson-Genon, L., & Carissimo, B. (2013). Numerical Simulations of the Microscale Heterogeneities of Turbulence Observed on a Complex Site. Boundary-Layer Meteorology, 147(2), 237–259.

Zhang, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. *Atmospheric Environment*, 35(3), 549–560. <u>https://doi.org/10.1016/S1352-2310(00)00326-5</u>

Zhang, L., Brook, J. R., & Vet, R. (2003). A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys., 16.

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., & Gong, S. (2002). Modelling gaseous dry deposition in AURAMS: A unified regional air-quality modelling system. *Atmospheric Environment*, *36*(3), 537–560. <u>https://doi.org/10.1016/S1352-2310(01)00447-2</u>

Photos : <u>https://dailyscience.be/NEW/wp-content/uploads/2019/08/arbres-en-ville-modif.jpg</u>

https://www.lemonde.fr/planete/article/2014/03/14/deux-photos-pour-se-rendre-compte-du-niveau-de-la-pollution_4383325_3244.html

Meteorological data

