SENSITIVITIES IN WET DEPOSITION MODELLING APPLIED TO THE FUKUSHIMA NUCLEAR ACCIDENT

STIJN VAN LEUVEN

Pieter De Meutter, Johan Camps, Andy Delcloo & Piet Termonia

Belgian Nuclear Research Centre

sck cen

GHENT

UNIVERSITY

RM

Introduction

Wet deposition is main contributor to radioactive contamination

- Atmospheric transport modelling (ATM) = important for
 - emergency preparedness
 - emergency response
- Wet deposition reduces air concentration by depositing radionuclides on the ground

 \rightarrow contamination

nuclear

releases

BUT difficult to model

We propose a novel method to improve wet deposition modelling

- Wet deposition is difficult to model
 - Physical properties difficult to measure
 - Simulation parameters are possibly case-dependent

Solutions

SCK CEN/50723005

sck cen

- Brute force: simulate whole parameter space (possibly 1000's of simulations)
- This presentation: novel method to improve wet deposition simulations through optimisation scheme

Fukushima as case study with Flexpart

Case study

¹³⁷Cs transport + deposition following
 Fukushima incident (2011)

Flexpart

SCK CEN/50723005

sck cen

- Stochastic Lagrangian particle model
- Meteodata from ECMWF

Introduction

Concentration measurements provided by CTBTO

- IMS radionuclide stations from CTBTO
 - International Monitoring System
 - Comprehensive Nuclear-Test-Ban Treaty Organization
- 80 stations worldwide

sck cen

SCK CEN/50723005

• 20 with highest measurements as 'receptors' in Flexpart

www.ctbto.org/map

How is wet deposition modelled?

- Scavenging: exponential decay process
 - $c(t + \Delta t) = c(t)\exp(-\Lambda\Delta t)$
 - *c* : concentration [Bq m⁻³]
 - Λ : scavenging coefficient [s⁻¹]
 - Δt : timestep [s]
- Deposition:
 - $F = \int \mathrm{d}z \,\Delta c \,[\mathrm{Bq}\,\mathrm{m}^{-2}]$

 $\Lambda = \Lambda(I, d_{\rm p})$

- *I* : rain intensity $[mm h^{-1}]$
- *d*_p : particle diameter (distribution) [µm]

Different processes are represented in Flexpart 10.4 (aerosols)

- In-cloud scavenging by
 - cloud condensation nucleation (CCN)
 - ice nucleation (IN)
- Below-cloud scavenging by
 - **rain** collision (*C*_{rain})
 - **snow** collision (*C*_{snow})
- Total scavenging: $\Lambda = \sum_i \Lambda_i$

sck cen

SCK CEN/50723005

Introduction

Default simulations show overestimation of concentration

- Default (CCN, IN, C_{rain}, C_{snow}) values
- Concentrations too high (x10)
 - 1. Source term? 😣
 - Literature: only factor x2-4 uncertainty
 - 2. Wind fields? 😣

sck cen

SCK CEN/50723005

- Xe simulations show no bias
- Xe: noble gas \rightarrow no deposition
- 3. Wet scavenging too weak ?

We propose a 2-step method to improve wet deposition modelling

1. Extract scavenging contribution of each process from single Flexpart simulation

(CCN, IN, C_{rain}, C_{snow})

 Optimisation scheme: scale individual scavenging contributions and fit remaining concentration to observations

STEP 1 – extract scavenging contributions

• Concentration left over at location \vec{x} & after time T since release

$$c(\vec{x},T) = c_0(\vec{x},T) - \sum_i \Delta c_i(\vec{x},T)$$

- c_0 : concentration without scavenging
- $\Delta c_i = \int_0^T \Lambda_i c dt$: contribution of each scavenging process (CCN, IN, C_{rain} , C_{snow}) between release and time T \rightarrow extract from Flexpart: altering source code

$c = c_0 - \sum_i \Delta c_i$

STEP 2 – optimise scavenging: scaling

- How to scale Δc_i 's?
 - Simply scaling $x_i \Delta c_i$ can produce negative c

→ not physical!

- Solution: introduce scaling factor A_i for every Λ_i so that
 - $\Delta c_i = (c + \Delta c_i)A_i$

UNIVERSITY

sck cen

SCK CEN/50723005

 A_i acts on part of the concentration that is 'available' to process i

Methodology STEP 2 – optimise scavenging: fitting

- Minimising cost function by varying A_i's
 - $F(c, c_{obs}; A_i) = (\log_{10} c(A_i) \log_{10} c_{obs})^2$
- Minimisation in 4-dimensional parameter space
 - (CCN, IN, C_{rain} , C_{snow})

Sanity check: step 1 works!

•
$$c = c_0 - \sum_i \Delta c_i$$

 $\rightarrow \frac{c}{c_0} + \sum_i \frac{\Delta c_i}{c_0} = 1$

GHENT

UNIVERSITY

RM

SCK CEN/50723005

sck cen

 Default (CCN, IN, C_{rain}, C_{snow}) values in Flexpart

What happened behind the scenes...

- Scaling factor of all scavenging processes increased
- Greatest increase for CCN and Crain
- Due to compensating effects, relative contribution of some processes can decrease (e.g. C_{snow})

GHENT

UNIVERSITY

RM

sck cen

SCK CEN/50723005

HARMO2 **CCN** 米 rain $C_{\rm snow}$ after Mar 19 Mar 22 Mar 25 Mar 28 Mar 31 Apr 03 2011

 C_{rain} C_{snow} CCN IN c

IN

*

15 ISC: Public

 The proposed optimisation scheme is able to improve simulation-observation correspondence by scaling the wet scavenging contributions of different scavenging processes

 This method is more efficient than a brute force method, as it in principle only requires 1 simulation

Questions?

17