

Local-scale air quality modeling in the urban street canyon

21st HARMO conference, Aveiro, Portugal

Yunyi WANG

30 September 2022

Co-authors: Chao Lin, Ryozo Ooka, Karine Sartelet, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Bertrand Carissimo, Zhizhao Wang

Contact: yunyi.wang@enpc.fr

Harmo21, Aveiro, Portugal

Content

℘ Introduction

➢ Model presentation

℘ Model validation

Comparison of two CFD tools

℘ Results

Introduction – Street emissions and concentrations

Objectives: Reproduce concentrations of gaseous and particle pollutants and study the impact of chemistry on their fomation

Model presentation

Use simplified street canyon as workbench to investigate the impact of chemistry on the air quality

- 2D modelling of street canyon
- Simulation of atmospheric dispersion, gas chemistry and aerosol dynamics
- Comparison of different CFD tools coupled to chemistry model (collaboration with Tokyo University)

Model presentation

RANS model k- ε linear production (CS) RNG k- ε model (OF) **Chemistry model: SSH-aerosol** – gas-phase chemistry and aerosol **SSH** aerosol dynamics - Gas-phase chemistry: Modified CB05 (Carbon Bond mechanism version 5) - Aerosol dynamics: Condensation/evaporation,

coagulation

Model setup

Field measurements & simulation set-up

- Measurement of NO₂, PM₁₀ and Black Carbon (BC) concentrations at a street station (ANR Traffipollu).

- Period: April 30 04:30-17:00 (Local time) Measured wind direction perpendicular to the street

- Location: Boulevard Alsace-Lorraine (Le Perreux sur Marne, Greater Paris)

- Traffic emissions (Kim et al 2022, GMDD)
- Background concentration (Sartelet et al. 2018, Atmos. Environ.)

- Meteorological boundary conditions (Lugon et al 2021 GMD)

Model validation

- For NO₂: good agreement with observations in the daytime

- For PM₁₀: good agreement with observations in the morning, but underestimation of the concentrations in the afternoon because of under-estimation of background concentrations (Lin et al. ACP 2022)

- For black carbon: under-estimation because of under-estimation of non-exhaust tire emission factors (Lugon et al. GMD 2021)

Harmo21, Aveiro, Portugal

Comparison of flow field in two CFD models

Different choice of turbulent models in two CFD tools:

- Slight difference in turbulence and velocity fields
- \Rightarrow Difference in species dispersion

Comparison of concentration field in two CFD models

-Background consistency in two CFD models

-Different turbulent models impact the dispersion of emitted pollutants

-Slight difference in inorganic and organic aerosols concentrations

-Chemistry impact significantly the formation of inorganic and organic aerosols

Harmo21, Aveiro, Portugal

Impact of chemistry for NO₂

- Gas chemistry leads to an average increase of NO₂ by 40.5% in Code_Saturne and -46.7% in OpenFoam
- Larger concentrations are found in the street near the leeward wall due to the reverse flow
- NO_2 mainly increased due to gas-chemistry production from NO (emission) and O_3 -(background). 10

Impact of chemistry for inorganic and organic aerosols

Increase of inorganic aerosols mainly comes from ammonium nitrate (NH₄, NO₃)
NH₄, NO₃ increase because of the emission of NH₃ gas and aerosol dynamics

Increase of organic aerosols mainly comes from biogenic organic aerosols (formed from mono-terpene, isoprene, etc)
Increase of ammonium nitrate enhances the condensation of hydrophilic species (biogenic)

Conclusions

- > A local-scale air quality model is developed by coupling CFD
 - (Code_Saturne, OpenFoam) to chemistry model (SSH-Aerosol)
- > The model is validated by comparing with measurements
- Similar results obtained from Code_Saturne/SSH-Aerosol and OpenFoam/SSH-aerosol simulations
- Gas chemistry and aerosol dynamics influence NO₂ and inorganic and organic aerosol concentrations

References

[1] Kim, Y. et al., MUNICH v2.0: a street-network model coupled with SSH-aerosol (v1.2) for multipollutant modelling. Geosci. Model Dev. in review.

[2] Lugon, L. et al., Black carbon modeling in urban areas: investigating the influence of resuspension and non-exhaust emissions in streets using the Street-in-Grid model for inert particles (SinG-inert), Geosci. Model Dev.

[3] Sartelet, K et al., 2018. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris. Atmos. Environ.

[4] Lin, C. et al., Modelling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD. Atmos. Chem. Phys. Discuss. in review.

Thank you for your attention