Defra 2021 Air Quality Model Inter-Comparison Exercise

David Carruthers⁽¹⁾

Jenny Stocker⁽¹⁾, Amy Stidworthy⁽¹⁾, Christina Hood⁽¹⁾, Rose Jackson⁽¹⁾, Molly Oades⁽¹⁾, Stephen Smith⁽¹⁾, Daniel Connolly⁽¹⁾, Shyn Tong⁽²⁾, Alison Davies⁽²⁾, Sean Beevers⁽³⁾, Nutthida Kitwiroon⁽³⁾, Nosha Assareh⁽³⁾, Paul Agnew⁽⁴⁾, Vivien Bright⁽⁴⁾, Lucy Neal⁽⁴⁾, John Stedman⁽⁵⁾, Beth Conlan⁽⁵⁾, Massimo Vieno⁽⁶⁾, Eiko Nemitz⁽⁶⁾, Stefan Reis⁽⁶⁾

> 21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

> > 27-30 September 2022,

Aveiro, Portugal

Cambridge Environmental Research Consultants Environmental Software and Services

(2)

(6)

X.

Department

for Environment

Food & Rural Affairs

UK Centre for

CERC

Ecology & Hydrology

(5)

(4)

Imperial College

Met Office

London (3)

Project motivation & context

- **Policy makers** need to have confidence in the air quality (AQ) models used on their behalf for a range of applications
- Model inter-comparison exercises (MIE) quantify model performance, providing evidence that ensures selected models are fit for purpose
- UK takes a combined measurement and modelling approach to reporting associated with the Air Quality Standards Regulations (AQSR, previously the EU Air Quality Directive) pollutant metrics
- **Defra 2021 AQ MIE** focuses on the **suitability of models for AQSR reporting** by comparing the results from the model currently used for this purpose to three other models that have UK national AQ modelling capabilities
- Model performance and results have been explained using information on models' formulations, configurations and inputs

CERC

Task	Brief description
0	Comparison of model formulation
1	Comparison of modelled compliance metrics
2	Comparison of modelled concentrations at measurement sites
3	Comparison of urban concentrations and compliance

• Focus of this presentation: Task 2 – comparison of modelled and measured data

Models & identifiers

Group	Modelling system	Identifiers		
Environmental Research Group, Imperial College London	CMAQ-Urban	ERG-ICL	CMAQ-Urban	
Met Office	Air Quality Unified Model (AQUM)	МО	AQUM-SPPO	
Ricardo*	Pollution Climate Mapping (PCM)	Ricardo	РСМ	
UK Centre for Ecology & Hydrology	EMEP	UKCEH	EMEP	

Environmental Research Group

Imperial College London

*Ricardo currently perform AQ compliance modelling for Defra using PCM

CERC

Overview of model formulation

Modelling group	oup ERG-ICL MO		Ricardo	UKCEH	
Dispersion model	CMAQ-Urban		PCM	EMEP	
Meteorological model	WRF	AQUIVI-SPPU	WRF (or measurements)	WRF	
Temporal resolution	Hourly	Hourly	Annual	Hourly	
Calibration	×	\checkmark	\checkmark	×	
Explicit modelling of road sources	✓ (ADMS Kernel)	No, but calibration approach extended to roadside concentrations	✓ (ADMS Kernel)	×	
Street canyon modelling	\checkmark	×	×	n/a	
Scale	Multi-scale model, high (20 m) final grid resolution	Low resolution regular grid (~ 12 km)	Mixed: fine regular grid (1 km) plus urban roadsides	Fine regular grid (1 km)	
Emissions	Bottom-up road transport emissions, differing from NAEI emissions / NAEI, EMEP in other sectors	NAEI, EMEP	NAEI, EMEP (projected from 2017 to 2018)	NAEI, EMEP, MapEIRE Integrated biogenic emissions; European biogenic vegetation emission factors	
Computational expense	tional expense High Medium		Low	High for meteorological modelling, lower for concentration modelling	

Measurements – NO_x , NO_2 , PM_{10} , $PM_{2.5}$, O_3

Hourly measurements from six automatic networks:

AURN	AQE	QE SAQN WAQN		NIAQN	ICL (formerly KCL)	
152	100	63	24	13	97	

Analysed results for 5 pollutants for 5 site types:

CERC

Туре	NO _x	NO ₂	PM ₁₀	PM _{2.5}	03
Rural Background	19	19	9	7	28
Urban Background	103	103	61	48	54
Roadside	223	224	154	66	15
Industrial	21	21	26	14	7
Roadside_nonAQD*	45	45	34	16	1

- All stations have at least 75% data capture in 2018 for the relevant pollutant
- Analysis includes sites used for calibration (PCM, AQUM-SPPO)

449 sites

Monitoring Sites

Site Type Industrial Roadside Roadside nonAQE Rural Background Urban Background

Summary of model evaluation results for NO₂

Concentrations in $\mu g/m^3$

- Good overall agreement for CMAQ-Urban and PCM
- EMEP slightly underestimates at background sites and underestimates at roadside sites (no roadside model or increment)
- AQUM-SPPO overestimates at rural sites
- AQUM-SPPO and EMEP underestimate variability
- CMAQ-Urban overestimates variability; diurnal variation at weekends not well represented

10083

1006

Annual mean at 160 roadside sites

Model evaluation statistics for NO₂

Evaluation of annual	Site type	Modelling group	Model	Mean	RMSE	N	MB	NMSD	MQI _{al}	nnual 90	
mean concentrations			Observed	19.8							
in μg/m ³		ERG-ICL	CMAQ-Urban	21.6	5.8		0.09	0.32		1.06	
	Background	MO	AQUM-SPPO	18.3	6.0		-0.08	-0.46		0.96	
	Ducita	Ricardo	PCM	18.5	4.7		-0.07	0.04		0.73	
		UKCEH	EMEP	15.0	6.9		-0.25	-0.18		1.10	RMSE: root mean square
			Ensemble	17.8	4.7		-0.10	-0.11		0.71	error
		50.0.101	Observed	36.6	12.1		0.00	0.26		4 4 2	NMB: Normalised mean
	Deedeide	ERG-ICL	CMAQ-Urban	38.8	13.1		0.06	0.36		1.43	bias
	Roadside	NO	AQUM-SPPO	33.0	12.4		-0.10	-0.67		1.45	NMSD: Normalised mear standard deviation
				34.0	9.0 24 2		-0.06	-0.20		2.70	
		UKCLH	LIVILF	14.9	24.5		-0.59	-0.57		2.70	WIQI . WOULD Quality
											Index
Evaluation of hourly	Site Type	Organisation	Model	Mean	RMSE	R	NMB	NMSD	СоЕ	Fac2	Index R : correlation coefficient
Evaluation of hourly concentrations in	Site Type	Organisation	Model Observed	Mean 19.9	RMSE	R	NMB	NMSD	СоЕ	Fac2	Index R : correlation coefficient CoE : Coefficient of
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type	Organisation ERG-ICL	Model Observed CMAQ-Urban	Mean 19.9 21.8	RMSE 13.3	R 0.74	NMB 0.09	NMSD 0.11	СоЕ 0.32	Fac2	Index R: correlation coefficient CoE: Coefficient of Efficiency Eac2: Eraction of
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type Background	Organisation ERG-ICL MO	Model Observed CMAQ-Urban AQUM-SPPO	Mean 19.9 21.8 18.4	RMSE 13.3 11.1	R 0.74 0.77	NMB 0.09 -0.08	NMSD 0.11 -0.30	CoE 0.32 0.43	Fac2 0.73 0.77	Index R : correlation coefficient CoE : Coefficient of Efficiency Fac2 : Fraction of modelled hours within
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type Background	Organisation ERG-ICL MO UKCEH	Model Observed CMAQ-Urban AQUM-SPPO EMEP	Mean 19.9 21.8 18.4 15.0	RMSE 13.3 11.1 13.8	R 0.74 0.77 0.68	NMB 0.09 -0.08 -0.25	NMSD 0.11 -0.30 -0.14	CoE 0.32 0.43 0.31	Fac2 0.73 0.77 0.66	Index R: correlation coefficient CoE: Coefficient of Efficiency Fac2: Fraction of modelled hours within factor of 2 of observed
Evaluation of hourly concentrations in µg/m ³	Site Type Background	Organisation ERG-ICL MO UKCEH	Model Observed CMAQ-Urban AQUM-SPPO EMEP Ensemble	Mean 19.9 21.8 18.4 15.0 <i>17.5</i>	RMSE 13.3 11.1 13.8 11.1	R 0.74 0.77 0.68 0.77	NMB 0.09 -0.08 -0.25 -0.12	NMSD 0.11 -0.30 -0.14 -0.17	CoE 0.32 0.43 0.31 0.45	Fac2 0.73 0.77 0.66 0.79	Index R : correlation coefficient CoE : Coefficient of Efficiency Fac2 : Fraction of modelled hours within factor of 2 of observed
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type Background	Organisation ERG-ICL MO UKCEH	Model Observed CMAQ-Urban AQUM-SPPO EMEP Ensemble Observed	Mean 19.9 21.8 18.4 15.0 <i>17.5</i> 35.9	RMSE 13.3 11.1 13.8 11.1	R 0.74 0.77 0.68 0.77	NMB 0.09 -0.08 -0.25 -0.12	NMSD 0.11 -0.30 -0.14 -0.17	CoE 0.32 0.43 0.31 0.45	Fac2 0.73 0.77 0.66 0.79	Index R : correlation coefficient CoE : Coefficient of Efficiency Fac2 : Fraction of modelled hours within factor of 2 of observed
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type Background	Organisation ERG-ICL MO UKCEH	Model Observed CMAQ-Urban AQUM-SPPO EMEP Ensemble Observed CMAQ-Urban	Mean 19.9 21.8 18.4 15.0 <i>17.5</i> 35.9 37.3	RMSE 13.3 11.1 13.8 11.1 23.4	R 0.74 0.77 0.68 0.77 0.62	NMB 0.09 -0.25 -0.12 0.04	NMSD 0.11 -0.30 -0.14 -0.17 0.05	CoE 0.32 0.43 0.31 0.45	Fac2 0.73 0.77 0.66 0.79	Index R: correlation coefficient CoE: Coefficient of Efficiency Fac2: Fraction of modelled hours within factor of 2 of observed
Evaluation of hourly concentrations in $\mu g/m^3$	Site Type Background Roadside	Organisation ERG-ICL MO UKCEH ERG-ICL MO	Model Observed CMAQ-Urban AQUM-SPPO EMEP Ensemble Observed CMAQ-Urban AQUM-SPPO	Mean 19.9 21.8 18.4 15.0 <i>17.5</i> 35.9 37.3 32.7	RMSE 13.3 11.1 13.8 11.1 23.4 19.8	R 0.74 0.77 0.68 0.77 0.62 0.62	NMB 0.09 -0.08 -0.25 -0.12 0.04 -0.09	NMSD 0.11 -0.30 -0.14 -0.17 0.05 -0.40	CoE 0.32 0.43 0.31 0.45 0.20 0.20 0.33	Fac2 0.73 0.77 0.66 0.79 0.73 0.73	Index R: correlation coefficient CoE: Coefficient of Efficiency Fac2: Fraction of modelled hours within factor of 2 of observed

Summary of model evaluation results for NO_x

Concentrations in $\mu g/m^3$

- Good overall agreement for **PCM**
- EMEP slightly underestimates at background sites and underestimates at roadside sites; overestimates NO₂/NO_x at roadside sites (no⁹⁰ roadside model or increment)
- AQUM-SPPO overestimates at rural sites
- AQUM-SPPO and EMEP underestimate variability
- **CMAQ-Urban** overestimates variability in annual mean between background sites
- CMAQ-Urban and AQUM-SPPO capture the diurnal variation at roadside sites
- CMAQ-Urban overestimates NO₂/NO_x at roadside sites

Average diurnal variation over 160 roadside sites CMAQ-Urban (ERG-ICL) AQUM-SPPO (MO) EMEP (UKCEH)

Annual mean at 160 roadside sites

Summary of model evaluation results for O₃

- Good annual mean agreement for CMAQ-Urban and AQUM-SPPO
- Good AOT40 agreement for AQUM-SPPO and PCM
- **EMEP** overestimates annual mean and AOT40 at urban background sites
- CMAQ-Urban underestimates summertime ozone at rural sites
- PCM, AQUM-SPPO and EMEP underestimate AOT40 variability
- CMAQ-Urban overestimates AOT40 variability
- AQUM-SPPO captures best the daily maximum of 8-hour rolling mean metric, as used in forecasting

Modelled

200

150

100

50

Hourly mean

at 27 rural

July only

CERC

background sites, May to

CMAQ-Urban (ERG-ICL)

mod=0.56 obs1+23 R²=0.4

100 150 200

50

50 100 150 200

Observed

AOT40 at 81 background sites

Concentrations in $\mu q/m^3$

Summary of model evaluation results for O₃

- Good annual mean agreement for CMAQ-Urban and AQUM-SPPO
- Good AOT40 agreement for AQUM-SPPO and PCM
- **EMEP** overestimates annual mean and AOT40 at urban background sites
- CMAQ-Urban underestimates summertime ozone at rural sites
- PCM, AQUM-SPPO and EMEP underestimate AOT40 variability
- CMAQ-Urban overestimates AOT40 variability
- AQUM-SPPO captures best the daily maximum of 8-hour rolling mean metric, as used in forecasting

Modelled

Daily maximum

8-hour rolling

mean at 81

background

CERC

sites

200

150

100

50

CMAQ-Urban (ERG-ICL)

mod=0.7[obs/+20 R²=0.55.

100

150

200

50

50

Observed

100 150

200

AOT40 at 81 background sites

Concentrations in $\mu g/m^3$

Summary of model evaluation results for PM_{2.5}

- Good overall agreement for all models
- AQUM-SPPO, CMAQ-Urban and EMEP reproduce the monthly variation
- EMEP and CMAQ-Urban show too much diurnal variation
- AQUM-SPPO overestimates levels and variability sites

Average diurnal and monthly variation over 54 background sites

12

11

10

hour

CMAQ-Urban (ERG-ICL) AQUM-SPPO (MO) EMEP (UKCEH) Ensemble Median

Annual mean at 54 background sites

Summary of model evaluation results for PM₁₀

- Good overall agreement for all models
- AQUM-SPPO, CMAQ-Urban and EMEP reproduce the monthly variation
- **EMEP** slightly underestimates the variability between sites
- CMAQ-Urban slightly overestimates at roadside sites
- CMAQ-Urban overestimates diurnal variation at roadside sites

Average diurnal variation over 115 roadside sites

month

Annual mean at 69 background sites

Summary of model evaluation

NOx

O3

- Normalised Mean Bias (NMB)
 - Ideal value 0
 - > 0: model overestimates
 - < 0: model underestimates
- Normalised Mean Standard Deviation (NMSD)
 - Ideal value 0

CERC

- > 0: model overestimates variation
- < 0: model underestimates variation

Uncertainties assessment: gaseous pollutants

Uncertainties assessment: particulate pollutants

CERC

HARMO21 - September 22 - Aveiro, Portugal

Common themes: data

• Land use inputs: some UK-specific land use categories not included in US developed WRF (meteorological) and MEGAN (biogenic emissions) models

• Emissions

CERC

- NAEI sub-sector data not widely available: hard to assign appropriate properties for lumped sectors eg. 'other transport'
- Point source properties not available from NAEI eg. release height and temperature needed for explicit modelling
- NAEI includes NO_x emissions, assumptions required to define proportion released as NO₂ for modelling
- NAEI traffic NO_x emissions may be too low due to emissions factors and fleet estimates
- Individual road emissions not available from NAEI (required for specific road modelling)
- Individual major road emissions based on DfT count points do not cover all roads with adjacent monitoring sites
- Urban morphology data for defining street canyons not freely available

SNAP sector 8: Other transport

22 - Aveiro, Portugal

Compliance comparison: Overview

• Metrics considered

- Annual metrics, to allow direct comparison with PCM
- Hourly resolution models could evaluate short-term metrics explicitly (PCM derives short-term metrics from annual values)
- Approach methodology
 - Calculations for 43 zones: agglomeration (28) and non-agglomeration (15) -
 - Separate grid and roadside datasets, to allow direct comparison with PCM zonal exceedances are calculated as the maximum concentration over grid and road datasets
 - PCM roadside concentrations: single link value, with no variation with side of road, road on 'CENSUS ID' network
 - Use of continuous, multi-scale models e.g. ERG-ICL (CMAQ-Urban) would motivate a single-dataset assessment approach (excluding road carriageways etc), with alongand across-road variability
- Mapped domains: UK, Greater London, Greater Manchester
 - Grid: NO_2 , NO_x , $PM_{2.5}$, PM_{10} and O_3
 - Road network : NO₂, PM_{2.5}, PM₁₀

CERC

Ricardo assisted with ensuring consistency with AQD processing methodologies

NO₂ gridded data

Annual average limit value 40 µg/m³

Urban comparison: gridded and roadside NO₂

Background sites on gridded plots, near-road sites on roadside

Conclusions

Conclusions:

CERC

- The detailed model validation has revealed strengths and limitations of the four models considered
- An examination of the model uncertainties shows that the proportion of observed variance unexplained by the models is broadly similar for each of the models. It is not straightforward to determine the specific causes of these errors
- The proportion of the observed variance correlated with the models and the mean bias element
 of the model error is easier to explain (e.g. related to emissions or lack of resolution). These
 errors tend to be higher for the uncalibrated models, but can be reduced.
- Implications for future model intercomparison work:
 - Consider additional PM component analyses
 - Examination of detailed concentration variation near roads
 - Comparison of metrics, e.g. exceedances of short-term limits, population-weighted means, exposure reduction
 - Use of consistent emissions inputs to allow sensitivity testing between models

Questions?

david.carruthers@cerc.co.uk

