21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 27-30 September 2022, Aveiro, Portugal

Acceleration of simulations by application of a kernel method in a high-resolution lagrangian particle dispersion model

Daniela Barbero^{1,2}, Bruno Ribstein³, Maxime Nibart³ and Gianni Luigi Tinarelli¹

¹ARIANET S.R.L., 20159 Milan, Italy

²Department of DICA, Politecnico di Milano, 20133 Milan, Italy

³ ARIA Technologies, 92100 Boulogne-Billancourt, France

The use of **microscale** atmospheric dispersion models in **long-term studies** and **forecasting systems** is growing.

- \rightarrow Constraint of computational **resources and time**
- → Implementation and test of an alternative method to compute concentration in a microscale Lagrangian Particle Dispersion Model to reduce the overall simulation time

2

PMSS model

Parallel Micro – SWIFT – SPRAY

- code designed to perform simulation at microscale
- composed by two main elements

A diagnostic reconstructor of the meteorological flow (**PSWIFT**)

A Lagrangian Particle Dispersion Model (**PSPRAY**)

- Independent parallelization of the two codes based on MPI paradigm:
 - \rightarrow reduce computational time
 - \rightarrow deal with "large" simulations (large areas and large time intervals)

21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Kernel Method

 \rightarrow Alternative to the classic box-counting method to compute 3D concentrations

С

Box Counting Method

Kernel Method

$$\Sigma_{i} = \frac{\sum_{j=1}^{N_{part,i}} m_{j}}{Volume_{i}} \quad with \ i=i-th \ cell$$

$$(x, y, z; t) = \sum_{p=1}^{Ntot} \frac{m_p}{h_x h_y h_z} K\left(\frac{x_p - x}{h_x}\right) K\left(\frac{y_p - y}{h_y}\right) K\left(\frac{z_p - z}{h_z}\right)$$

Kernel Method in PMSS

- \rightarrow Implemented in PMSS
 - Bi-weight kernel function:
 - $K(x) = \begin{cases} \frac{15}{16} \left[1 \left(\frac{x_p x}{h_x}\right)^2 \right]^2 & \text{for } \left|\frac{x_p x}{h_x}\right| \le 1 & K(x) \ge 0 & \forall x \in \text{Domain } D \\ 0 & \text{for } \left|\frac{x_p x}{h_x}\right| \le 1 & \int_D K(x) dx = 1 \end{cases}$
 - Geometric formulation of bandwidths:

$$h_x = 3.5 * \Delta x$$

 $h_y = 3.5 * \Delta y$

 $h_z = 1.2 * h_0$ (h₀=height of ground level concentration)

5

Kernel Method in PMSS

- 1. Impermeable boundaries
 - Ground

Reflection term $K(z) = K\left(\frac{z_p - z}{h_z}\right) + K\left(\frac{z_p + z}{h_z}\right)$

• Obstacles

Modification of the volume of influence

- 2. Integration of deposition
- 3. Nested and tiled configuration

Theoretical influence volume of particle, given by bandwidths

Actual cells in which the mass of the particle is redistributed

Cell-Building

6

Kernel method in PMSS

\rightarrow Already tested for traffic gases emissions

Index	Gas
	concentration
Particles reduction [%]	95%
Time reduction [%]	80%
Index of agreement	0.98

Test cases

Test case 1

- 1 punctual source
- Emission of gas
- Domain configuration
 - Microscale (1 m horizontal resolution)
 - Obstacles
 - Tiled configuration

Test case 2

- 1 punctual source
- Emission of gas and <u>particles</u>
- <u>Deposition</u>
- Domain configuration
 - Microscale (1-2 m horizontal resolution)
 - Obstacles
 - <u>Nested</u> configuration

• Averaging time interval: 1 hour

• Averaging time interval: 1 hour

Results – Test case 1

Index	Gas
	concentration
Particles reduction [%]	80%
Time reduction [%]	68%
FAC2	0.95
Correlation	0.94
Index of agreement	0.96

Results – Test case 2

21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

27-30 September 2022, Aveiro, Portugal

Conclusion

Kernel method successfully tested in PMSS for:

- Linear and point sources
- Emission of gaseous and particulate pollutant
- Deposition of particulate pollutant
- Tiled and nested domain configuration
- \rightarrow Results are consistent for all configurations and show:
- with a reduction of 80% of emitted computational particles
- an overall reduction of time between 60-80%
- obtaining hourly ground concentration fields with an IA of at least 0.95