
Treatment of the near ground effect in Lagrangian stochastic methods applied
to a 2-D point source dispersion after an isolated obstacle in a neutral flow.
Context
In PDF methods, the probability density function (PDF) on a given state

vector is estimated by following in their displacement a large number of
particles, each one being associated instantaneous quantities of interest.
Such methods are more and more used in atmospheric flows especially in
the scope of the dispersion of pollutants. These flows are in general greatly
impacted by the presence of the ground but the influence of the latter one
are often mistreated. The goal of the present poster is to highlight the effect
of the wall on the dynamic of the particles and the necessity to properly treat
it. The mean fields necessary to resolve the stochastic differential equation
(SDE) driving the dynamic of the particles are estimated in advance by a
moment approach (Hybrid methods). The particles are modeled using the
simplified Langevin model (SLM), where the blue terms are mean terms
issued from finite volume (FV) methods which have to be interpolated at
the position of the particles.
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1-D surface boundary layer
Boundary condition for rough and smooth walls
[1, 2]
• Keep the particles in the domain
• Be applied directly on the instantaneous quantities
• Represent the physics in the logarithmic zone −→ Elastic rebound
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Figure 1 : Equation and scheme of the Lagrangian wall boundary condition

Necessity to use the proper non elastic rebound plane:
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(b) streamwise velocity
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Figure 2 : Effect of the standard wall boundary condition (×) compared to the elastic
boundary condition(+) and the analytical solution ( black line) with a rough wall

Independence on the rebound height within the log. zone:
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Figure 3 : Independence on the rebound plane height within the logarithmic zone shown
on the second order moments. Different physical heights are used yielding resp. to:
z+

pl = 335 (■) , z+
pl = 167 (×), z+

pl = 100 (▼) and z+
pl = 67 (+), with z+

pl = zpluτ

ν

Interpolation issue
• Better treatment of the non-uniformity within a cell: P1 interpolation
• Quantities of main interest:

U : ∇U necessary for the production term of the Reynolds tensor
TL = Cl

k
ϵ : ∝ z more accurate interpolation than ϵ ∝ 1/z
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(a) streamwise velocity
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(b) resp. ⟨uw⟩, ⟨ww⟩, ⟨uu⟩
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Figure 4 : Zoom on the near wall results obtained on a 20 cells mesh using a P0
interpolation on all fields(•) and using P1 interpolation for the velocity and Lagrangian
time scale (×). The gray lines represent the face of the coarser mesh

2-D point source dispersion after an isolated ob-
stacle [3]
• Hybrid method on the dynamic
• Stand alone methods on the concentration
• Only particle issued from the source are simulated with dC = 0

no micro-mixing considered
concentration constant along each particle trajectory

• Estimation of the scalar flux ⟨uic⟩ possible

⟨uic⟩ = ⟨C⟩(⟨Ui⟩s − Ui) (1)

with ⟨Ui⟩s the mean velocity of the particle issued from the source
with Ui the mean velocity of the fluid extracted from FV solver
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Figure 5 : Results obtained for a point-source dispersion after an obstacle of height
H; the the source (red dot) is set 1H after the obstacle. The results obtained are
compared with experimental data (+) [3] for respectively (a) the mean concentration
⟨C⟩ ,(b) the streamwise and (c) the normal scalar flux ⟨uc⟩, ⟨wc⟩. Note that the scale
depends of the position; the red span is a reference value constant for all position.
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CEREA, École des Ponts, EDF R&D, Ile de France, France

ED
F

SA
au

ca
pi

ta
ld

e
92

4
43

3
33

1e
ur

os
-R

CS
Pa

ris
B

55
2

08
1

31
7

-C
op

yr
ig

ht
ED

F
M

éd
ia

th
èq
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