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Abstract: An application of a simple urban air quality model (DAUMOD-GRS) shows that summer maximum O3 
hourly concentrations (Cmax) above 40 ppb occur outside the Metropolitan Area of Buenos Aires (MABA) where the 
absence of observations impedes model testing. In addition, those relatively high values present the greatest model 
uncertainty caused by possible errors in model input variables. In order to tackle this issue, a probability assessment 
of Cmax values exceeding 40 ppb is performed applying a Monte Carlo analysis. On the other hand, a non-hierarchical 
(k-means) clustering analyses is applied to analyse the Monte Carlo outcomes. Results show three main clusters with 
a marked spatial distribution resembling that of the ozone precursor species emissions, which highlights an important 
role of the emissions on the regimes under which modelled Cmax values in the MABA can occur. 
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INTRODUCTION 
Ozone (O3) is among the air pollutants of increasing concern worldwide. Due to its photochemical nature, 
it usually maximises in summer and outside urban zones where an optimal ratio between their precursor 
species concentrations occurs (e.g., Calfapietra et al., 2013). Hence, the evaluation of summer O3 
concentrations constitutes an important aspect of any air quality assessment around urban areas. 
 
The Metropolitan Area of Buenos Aires (MABA) concentrates nearly 30 percent (13 million inhabitants) 
of Argentine's population in 3830 km2. It is located on a flat terrain and surrounded by non-urban areas 
and the de la Plata River. A few air sampling campaigns carried out in three urban sites have revealed 
ozone hourly concentration levels relatively low compared to its Air Quality Standard (120 ppb). In spite 
of current regulation, ozone has not been measured regularly in the MABA yet, except for one urban-
industrialized site since the end of 2015. Therefore, model results constitute the only available estimates 
of its spatial distribution. In a previous paper, modelled summer peak O3 hourly concentrations (Cmax) 
above 40 ppb [one of the accepted thresholds to protect vegetation] were found to occur outside the 
MABA (Pineda Rojas and Venegas, 2013). However, those relatively high concentration values were also 
found to present the greatest uncertainties caused by possible errors in the model input data (Pineda Rojas 
et al., 2016). In this context, a probability assessment of such exceedances may provide a more robust 
estimate than a deterministic one (Yegnan et al., 2002).  
 
In this work, a Monte Carlo evaluation of the probability of occurrence of peak O3 hourly concentrations 
greater than 40 ppb in the MABA during a typical summer season, using the simple urban-scale 
atmospheric dispersion model DAUMOD-GRS, is presented. In order to overcome the limitations due to 
the size of the Monte Carlo outcomes, a non-hierarchical (k-means) clustering analysis is performed 
aiming to identify the environmental conditions under which Cmax occurs and to gain insight on the model 
performance outside the MABA, where the highest values are obtained. 
 
 



METHODOLOGY 
The DAUMOD-GRS model (Pineda Rojas and Venegas, 2013) is an urban-scale atmospheric dispersion 
model which includes a simplified photochemical scheme (the Generic Reaction Set: GRS). It allows 
estimation of ground-level urban background concentrations of nitrogen dioxide and ozone resulting from 
area source emissions of nitrogen oxides (NOx) and volatile organic compounds (VOC). A detailed 
description of the model and its performance evaluation in the MABA can be found in Pineda Rojas and 
Venegas (2013) and in Pineda Rojas (2014). 
 
Probabilistic assessment 
In this work, the DAUMOD-GRS model is applied to estimate the horizontal distributions of summer 
maximum peak ozone hourly concentrations (Cmax) in the Metropolitan Area of Buenos Aires, applying a 
Monte Carlo analysis (Pineda Rojas et al., 2016). A large number of simulations (N) in which the input 
data sets (the meteorological and emission data) are perturbed randomly, is performed. Since the error 
probability distributions for these data are not known for the MABA, we consider functions and ranges 
published in the literature (e.g., Hanna et al., 1998). By performing N=100 Monte Carlo runs, the 
probability of having a value of Cmax greater than 40 ppb at each receptor is estimated  as the number of 
exceedances obtained divided by N. 
 
Meteorological information from the station located at the domestic airport for the base case (no 
perturbations) belong to a typical summer (2007), while area source emission data come from the 
inventory developed for the MABA (Venegas et al., 2011). Nine DAUMOD-GRS input variables are 
perturbed: wind speed (WS) and direction (DIR), air temperature (T), sky cover (SC), total solar radiation 
(TSR), atmospheric stability class (KST), local NOx emission rate (QNOx), local VOC emission rate 
(QVOC) and regional background ozone concentration ([O3]r). Simulations are performed at a spatial 
resolution of 1 km x 1 km, in domain of 80 km x 75 km. At each run, the Cmax value, its hour of 
occurrence and the associated perturbed input variables (10 variables) are stored at 4647 non-water 
receptors. Then, the Monte Carlo outcomes generate a dataset of 10 x 100 x 4647 = 4,647,000 values. 
This size clearly limits the direct observation of the data. 
 
Clustering analysis 
Clustering analysis aims for an unbiased classification of big datasets into groups containing objects with 
similar characteristics. The k-means algorithm is one of the most widely used methods for air quality 
applications (e.g., Beaver and Palazoglu, 2006; Jin et al., 2011). It consists of several steps. First, the 
number of clusters (k) has to be defined, and then their positions are randomly placed in a M-dimensional 
space, where M is determined by the number of variables describing the objects. Each object is initially 
assigned to a cluster based on some measure of the distance between them. Once all objects are 
distributed among the k clusters, the cluster centres are recalculated by averaging the positions of all 
members (i.e., all objects within the cluster). The two steps are repeated until they leave clusters 
unchanged. K-means is an heuristic algorithm that can lead to suboptimal solutions, depending on the 
initial conditions.  
 
In this work, the Matlab function kmeans is used with k=4, and 100 random initializations are performed 
to avoid suboptimal solutions. An object is a set of conditions in which Cmax occurs (its hour of 
occurrence and the perturbed input variables). Each variable is scaled subtracting its mean and dividing 
by its standard deviation across the whole modelling domain.  
 
 
RESULTS 
The probability of obtaining values of Cmax greater than 40 ppb (not shown) is lower than 5% in most of 
the metropolitan area. A expected, it increases with the distance to city core. Outside the urban area, this 
probability is greater than 70% and reaches a maximum of 82% at 20 km southwest the MABA. 
 
Figure 1 shows the dominant cluster at each receptor. The four clusters appear to distribute in the MABA 
as a function of the spatial variation of the NOx and VOC emission rates. Clusters 1 and 4 are mostly 
present at places of moderate and high emission rates, respectively; while clusters 2 and 3 occur in 



general at receptors with no emissions. From Figure 2, the largest difference between the mean 
normalised variables of clusters 1 and 4 is found in the emissions. On the other hand, clusters 2 and 3 
differ mostly in the mean time of occurrence of Cmax and in the mean sky cover. 
 

 
 

Figure 1. Dominant cluster at each receptor. 
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Figure 2. Normalised variables (z-score) averaged for each cluster [Cmax: summer maximum O3 hourly concentration, 
H: hour of occurrence of Cmax, WS: wind speed, T: air temperature, SC: sky cover, KST: atmospheric stability class, 
TSR: total solar radiation, QNOx: NOx emission rate, QVOC: VOC emission rate, [O3]r: regional background O3 
concentration] 
 
Table 1 presents the same variables as in Figure 2 with their units. The Cmax values occur, on average, at 
13-15 h for clusters 1, 3 and 4; while it does at 7 h in cluster 2. These differences can also be observed in 
the mean values of T and KST of the four clusters, and suggest different main drivers on ozone formation: 
photochemical (clusters 1, 3 and 4) vs. dispersive (cluster 2). 
 



 
Table 1. Variables from Figure 2 averaged for each cluster. 

 
Cluster # 

 
Objects (%) 

 
Cmax 

(ppb) 
H 

 
WS 

(ms-1) 
T 

(°C) 
SC 

(okta) 
KST 

 
TSR 

(Wm-2) 
QNOx 

(gkm-2s-1) 
QVOC 

(gkm-2s-1) 
[O3]r 

(ppb) 

1 103036 (22) 20.2 13 5.1 27.0 1 2 854.9 1.2 0.6 20.1 
2 280765 (60) 32.9 7 1.3 22.4 1 5 166.5 0.1 0.0 20.3 
3 68503 (15) 30.8 15 1.7 24.5 4 4 119.8 0.3 0.1 20.6 

4 12396 (3) 18.5 14 6.0 26.8 1 2 762.3 6.3 5.1 20.4 
 
The wind roses of the clusters (Figure 3) show that the regions of Figure 1 present values of Cmax which 
occur, on average, for different wind directions. At receptors of high emission rates (cluster 4), Cmax 
occurs with moderate winds (3.7 ms-1) from the ENE (22%) or with relatively intense winds (7.7-8.2 ms-

1) from the SE-SSE (27.1%) sector. At places of moderate emission rates (cluster 1), the winds that are 
associated to the occurrence of summer ozone peaks come mainly from the S-W sector (43.5% of the 
time) and have mean intensities varying between 5.1-8.0 ms-1. Finally, in cells with no emissions (clusters 
2 and 3), Cmax is associated to more variable wind directions and low wind conditions (< 2 ms-1)    
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Figure 3. Wind rose of each cluster 

 
 



CONCLUSIONS 
A probabilistic assessment of summer maximum ozone hourly concentrations (Cmax) greater than 40 ppb 
is performed for the Metropolitan Area of Buenos Aires (MABA), applying a Monte Carlo analysis with  
the simple urban-scale atmospheric dispersion model DAUMOD-GRS. Results show very low 
probabilities in the urban area and values above 70% outside the MABA. A k-means algorithm is applied 
to analyse the outcomes obtained from the Monte Carlo simulations. Results show three main clusters 
with a marked spatial distribution resembling that of the ozone precursor species emissions. Two clusters 
are mostly present in the most urbanised area, where Cmax occurs around midday hours under conditions 
of relative high wind speeds. A third cluster is found mainly outside the MABA (no emissions) where the 
greatest Cmax values occur, on average, during early morning hours with low wind intensities (< 2 ms-1). 
The latter shows that the greatest Cmax values obtained outside the MABA are associated to wind 
directions either from or to the MABA, suggesting an important role of the "memory effect" of the model.  
 
The results obtained in this work show the potential of combining Monte Carlo simulations with 
clustering analysis to gain insight from modelled data that are usually not analysed beyond the estimation 
of uncertainty and may contain valuable information on the modelled pollutant concentration. 
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