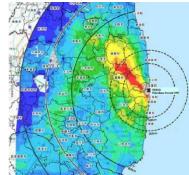
IRSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

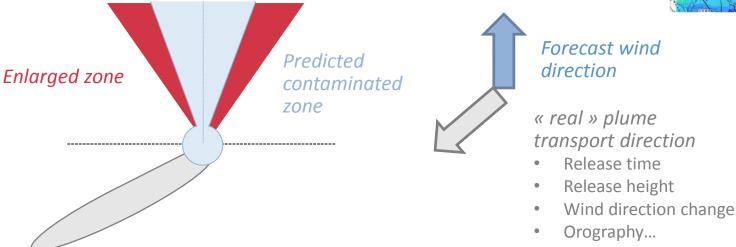
USING METEOROLOGICAL ENSEMBLES FOR ATMOSPHERIC DISPERSION MODELING OF THE FUKUSHIMA NUCLEAR ACCIDENT

October 12th 2017, Bologna, It

RAPHAËL PÉRILLAT^{1,2,5}, Ngoc Bao Tran LE^{1,3}

Irène Korsakissok¹, Vivien Mallet³, Anne Mathieu¹, Damien Didier¹, Thomas Sekiyama⁴, Mizuo Kajino⁴, Kouji Adachi⁴ and Yasuhito Igarashi⁴


> 1 IRSN - Institute of Radiation Protection and Nuclear Safety, Fontenay-aux-roses (France). 2 BERTIN Technologie, Saint-Aubin (France). 3 INRIA, Paris (France). 4 Japan Meteorological Agency, Meteorological Research Institute, Tsukuba (Japan). 5 now at Phimeca Engineering, Paris (France).


Context

In case of an accidental release

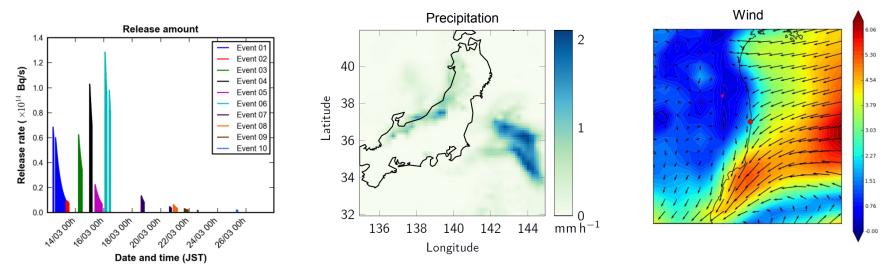
A deterministic aproach is used

Fukushima: no model was able to predict the north-western deposition area !

> The uncertainties are very strong

The model cannot predict some events

A reliable estimation of uncertainties is crucial



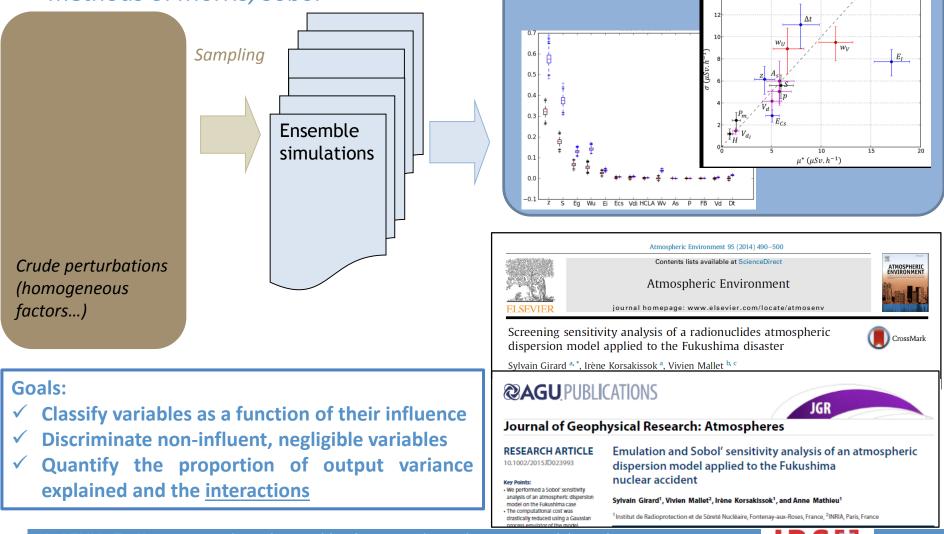
What are the uncertain input variables ?

Deposition velocities and scavenging coefficients: 1 scalar per species

Source term: release height, kinetics (emitted quantity as a function of time) for each species, composition (isotopic ratios)

Meteorological fields: Wind, rain, stability... 2D or 3D field as a function of time

Complex structures, spatial and temporal correlations


- Meteo and source term are the main sources of uncertainties
- How to determine a realistic distribution ?

R. PERILLAT - Using meteorological ensembles for atmospheric dispersion modeling of the Fukushima nuclear accident. *HARMO18 October 12th 2017*

Perspectives

What is the influence of input variables ?

First step: global sensitivity analysis methods of *Morris, Sobol*

R. PERILLAT - Using meteorological ensembles for atmospheric dispersion modeling of the Fukushima nuclear accident. *HARMO18 <u>October 12th 2017</u>*

Perspectives

How to quantify the uncertainty of data ?

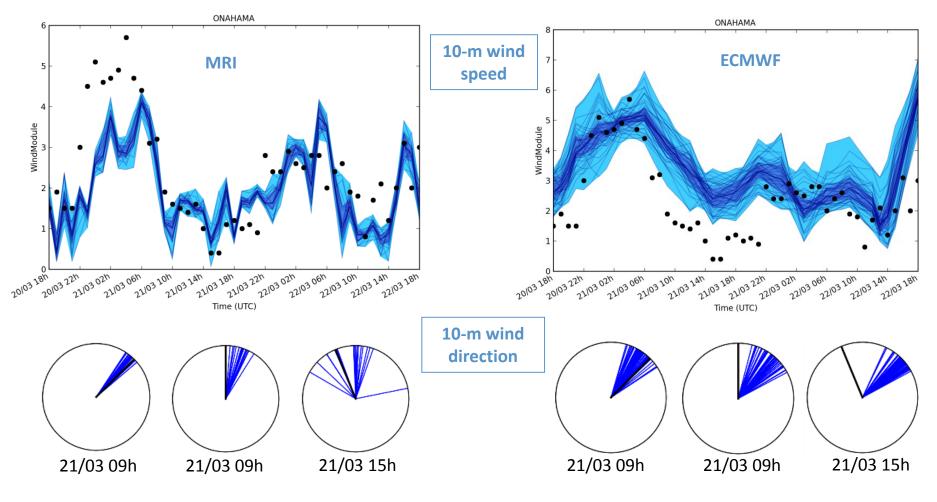
➢Using meteorological ensembles ensures physical consistency !

MRI (from Sekiyama et al) ensemble:

- High-resolution
- High-frequency assimilation
- Representative of analysis error (a posteriori)

ECMWF ensemble:

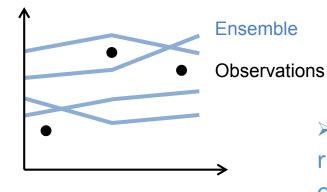
- crude resolution (horizontal & vertical)
- 24 hour–forecast (Assimilation at 00h each day, used between T₀ and T₀+24h)
- Representative of forecast error
- Representative of data used in a emergency ?


	MRI data	ECMWF data
Members	20	50
Grid resolution	3 km	0.25°
Vertical levels	Sigma levels 15 levels below 2000 m	Pressure levels 5 levels below 5000 m
Time step	1 hour	3 hours
Assimilation time step	3 hours	24 hours

R. PERILLAT - Using meteorological ensembles for atmospheric dispersion modeling of the Fukushima nuclear accident. *HARMO18 October 12th 2017*

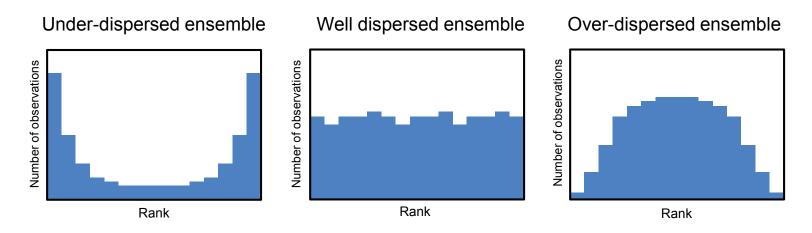
Perspectives

How to validate the input data uncertainties?


- > Is the ensemble is representative of the uncertainties *propagated in our model?*
- Comparison to 10-m wind and rain observations (AMEDAS network)

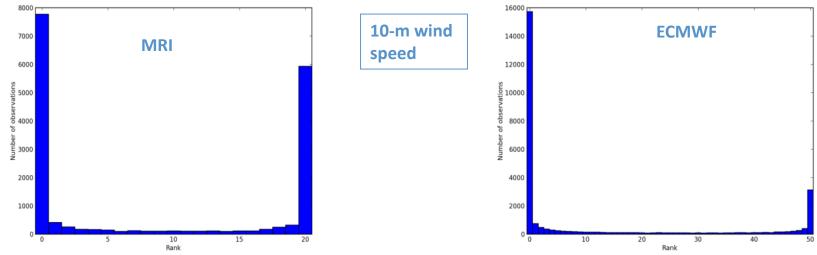
IRSN

How to validate the input data uncertainties?


What is a rank histogram ?

The rank of an observation is the number of ensemble members that are under this observation.

> The rank histogram is a way to show how reliable an ensemble is compared to a set of observations.


Exemples of Rank histogram:

IRSN

How to validate the input data uncertainties?

Rank histogram

ECMWF ensemble is more widespread that the MRI ensemble

The observations are often outside the ensemble: the ensemble may under-estimate the meteorological variability close to the ground

> Do we need to perturb these ensembles ? (HARMO 2016)

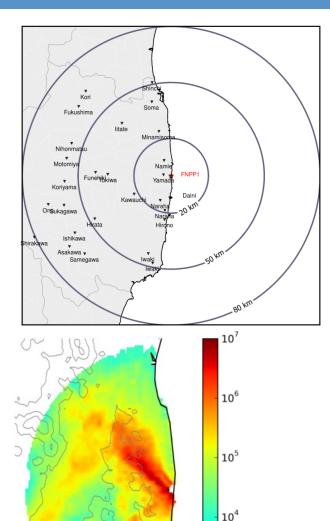
These ensemble are worth to be used for uncertainty propagation

- > The plume's dispersion does not always depend on near-ground variables
- > the uncertainties may accumulate along the plume trajectory

Uncertainty propagation

IRSN's Gaussian puff model pX (Korsakissok et al, 2013)

MRI and ECMWF ensembles

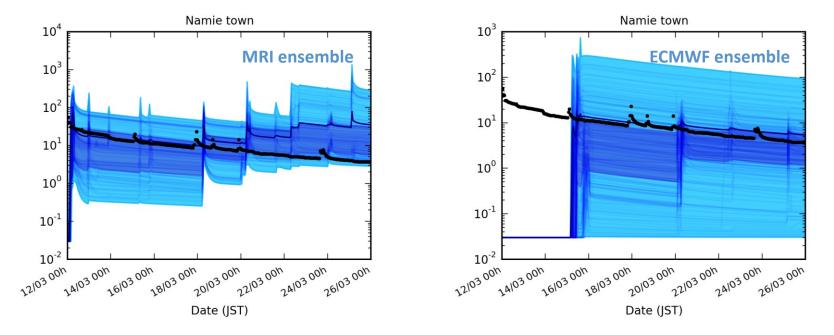

Seven source terms from the literature

- Mathieu et al, 2012
- Terada et al, 2012
- Saunier et al, 2013
- Katata et al, 2015
- Stohl et al, 2011
- Winiarek et al, 2012
- IRSN's inverted source term with long-distance model and MRI deterministic meteorological data

No additional perturbation on source term

No perturbation of physical parameterizations

Comparison to gamma dose rate stations in the Fukushima prefecture, and to ¹³⁷Cs deposition measurements from airborne measurement at the end of the emergency

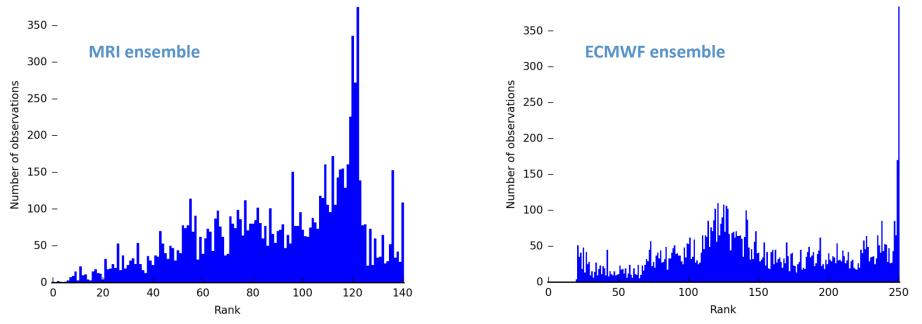


10³

 10^{2}

Ensemble + 7 source terms

Goal: to encompass gamma dose rate observations


The spread of the simulations ensemble is quite large compared to the observation variation. The small variability of the meteorological data allows to create large variability in the dispersion results.

Some events are sometimes not well represented...

IRSI

Ensemble + 7 source terms

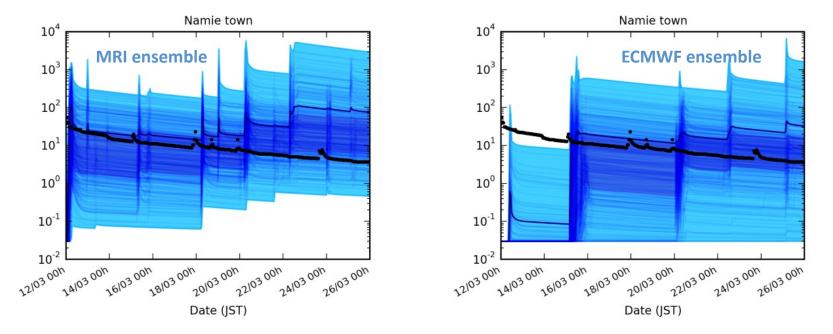
Goal: to encompass Cs-137 deposition observations

The two ensembles underestimate the high values of deposition

These rank diagrams are obtained by using only the ensemble and 7 source terms, which means that several uncertainties are not taken into account

Next step: full Monte Carlo with all uncertainties

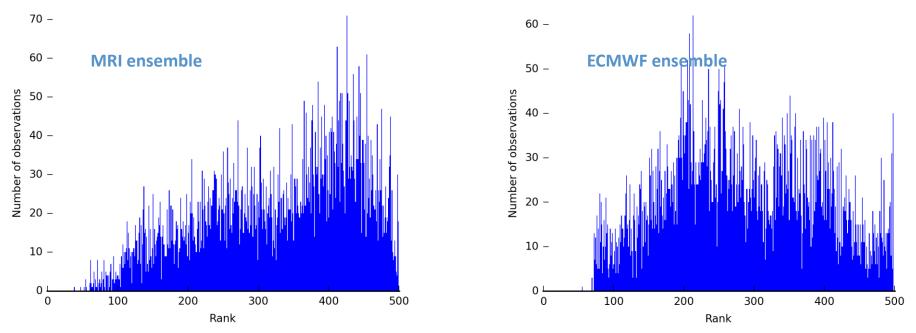
Monte Carlo simulations: > 500 perturbed runs


Perturbations of the input:

Variable	Perturbation	
Meteorological fields	Draw between the member of the ensemble	
Stability calculation method	[Turner, LMO, Gradient]	
Source term	[Mathieu, Stohl, Terada, Katata, Winiarek, SaunierECMWF, SaunierMRI]	
Source term amplitude	LogNormal (×3, ÷3) at 95%	
Source term time shift	Normal (+3H, -3H) at 95%	
Source term altitude	Uniform [20, 150]	
Dispersion method	[Doury, Pasquill, Similarity]	
Deposition coefficient	LogNormal [0.5, 5] at 95%	
Scavenging coefficient	LogNormal [0.005, 0.05] at 95%	

Monte Carlo simulations:

Goal: to encompass gamma dose rate observations

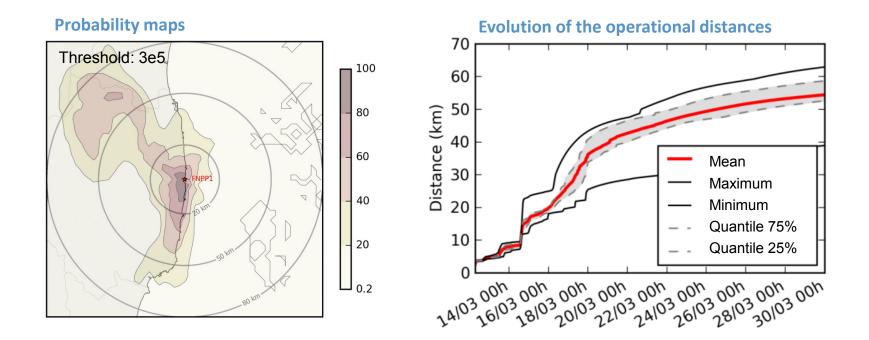

The Monte Carlo results have a larger spread than the crossed simulations between the meteorology and the source terms.

Some events are still not well represented

Monte Carlo simulations

Goal: to encompass Cs-137 deposition observations

The ensemble results are a bit over-dispersed but embrace the observations


There is a bias for the MRI ensemble

Several simulations are under all observations in the two ensembles:

- The inputs are over-dispersed
- > A threshold on the observation limits the rank histogram

The use of Monte Carlo simulations in emergency

The Monte Carlo results can be used to estimate the probability of an event to happen

These tools could allow a better decision making in case of an emergency

IRSN

Conclusion and perspective

Monte Carlo results

- The small variability of the meteorological data allows to create large variability in the dispersion results
- The ensemble results are a bit over-dispersed but embrace the observations
- Importance of taking into account all uncertainties (Monte Carlo)

Improvement of the results

- Calibration of the inputs uncertainties
- Taking into account the observation error
- → PhD of Ngoc Bao Tran LE (Poster H18-140)

In the future: Adaptation for operational purposes

Feel free to send me an e-mail for more discussion: perillat@phimeca.com

