18th International Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes

9-12 October 2017 Bologna, Italy

INVERSE DISPERSION MODELLING FOR A QUICK SCAN SERVICE TO ASSESS FUGITIVE EMISSIONS FROM LANDFILLS

Armand Albergel¹, Denis Morin¹, Didier Buty¹, Maxime Nibart¹, Laurent Makke¹, Robin Goix¹, Robert Kelly², Caroline Bouchet² and Felix Vogel³

¹ ARIA Technologies, Boulogne-Billancourt, France
 ² SUEZ, Le Pecq, France
 ³ IDSL/LSCE a joint CEA CNRS LIVSO Lab. Université Paris Sa

³ IPSL/LSCE a joint CEA-CNRS-UVSQ Lab., Université Paris-Saclay, France

An ounce of practice is worth more than tons of preaching. —Mahatma Gandhi

ARIA Technologies SA 8-10, rue de la Ferme – 92100 Boulogne Billancourt – France Telephone: +33 (0)1 46 08 68 60 – Fax: +33 (0)1 41 41 93 17 E-mail: <u>info@aria.fr</u> – http://www.aria.fr

Outline

Context

- CH₄ produced by landfills
- **GHG MRV and mitigation**

Inverse modeling approach

- Experimental site
- Measurement protocol
- Multi-sources back-plume approach
- AMIS adaptive Bayesian approach

Dual tracer method

- Methodology
- Measurement protocol
- Results

Conclusion

9-12 October 2017 Bologna, Italy

From Chidambarampadmavath et al Renewable and Sustainable Energy Reviews Volume 71, May 2017, Pages 555-562 2

Outline

ARIA TECHNOLOGIES

Context

- **CH**₄ produced by landfills
- **I** GHG MRV and mitigation

Inverse modeling approach

- Experimental site
- Measurement protocol
- Multi-sources back-plume approach
- AMIS adaptive Bayesian approach
- **Dual tracer method**
 - Methodology
 - Measurement protocol
 - Results

Conclusion

CONTEXT

1 kg of CH_4 has the same impact on global warming than releasing 28 kg of CO_2 on a 100 years scale (IPCC 2013).

 CH_4

- 14% of the world GHG emissions
- 8.6 % of the European Union GHG emissions in 2010.
 - **595 MtCO2eq in 1990**
 - 405 MtCO2eq. in 2010 (a reduction of more than 30%).
 - 49% Agriculture & 32% Waste

Sources : http://www.eea.europa.eu/dat a-and-maps/data/data-viewers/greenhouse-gases-viewer

Landfills : >15% of the total emission of CH_4

Source US-EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015.

CONTEXT

Need of a routine "quick scan" service

- GHG MRV
- Checking collect and countermeasure efficiency
- Optimizing the biogas collect and its valorisation

Outline

Context

- **CH**₄ produced by landfills
- GHG MRV and mitigation

Inverse modeling approach

- Experimental site
- Measurement protocol
- Multi-sources back-plume approach
- AMIS adaptive Bayesian approach
- Dual tracer method
 - Methodology
 - Measurement protocol
 - Results

Conclusion

Experimental site

Domestic /urban waste landfill Rural site - Flat natural terrain

- Old one closed (1974- 2004)
- Active one from 2005
 - ~ 250 000 t / year
 - 30 ha x H=20m ; 2.8 M m³ /3.1 M t
- Biogas 4.5 M Nm3 collected
- 9.5 Gwh_e ~900 toe (tep) saved

Présentation de l'Installation

Experimental set-up & data

CH₄ measurement (dt = 1s)

- Picarro analyser (G2203)
- Cavity Ring Down Spectroscopy
- PC +GPS
- Power supply

Meteorological ground station

Base on linearity between sources and receptors and steady state assumption : n area sources, m receptors

$$\begin{bmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \dots & A_{mn} \end{bmatrix} \begin{bmatrix} Q_1 \\ \vdots \\ Q_n \end{bmatrix} + \begin{bmatrix} B_1 \\ \vdots \\ B_m \end{bmatrix} = \begin{bmatrix} C_1 \\ \vdots \\ C_m \end{bmatrix}$$

- A_{ij} is the atmospheric transfer coefficient from source *i* to measurement *j*
- Q_j is the emission rate of the source *j* from 1 to n
- C_i is the measured concentration at receptor *i* from 1 to m
- B_i is the background at receptor *i* from 1 to m =>
- Finding Q_j required $[A_{ij}]$ (pseudo)inversion
 - Quick means n and m not to big
 - [A_{ij}] well conditioned

The "Condition Number" of matrix A, $\kappa(A)$, is an indicator of how the error on concentration may be amplified when source rates are obtained

$$\kappa(A) = \frac{M_{max}}{M_{min}} = \|A\|_{M} \cdot \|A^{-1}\|_{M}$$

Considering Euclidian distance

$$\|x\|_E = \sqrt{\sum_{1}^{N} x_i^2}$$

• How much the matrix A(n,m) can stretch vectors ?

•
$$M_{max} = max\left(\frac{\|Ax\|}{\|x\|}\right) = \|A\|_M$$
 Considering "max distance"

how much the matrix A can shrink vectors ?

•
$$M_{min} = min\left(\frac{\|Ax\|}{\|x\|}\right) = \frac{1}{\|A^{-1}\|_{M}}$$

Multi-sources back-plume approach

- We need to solve a system AQ = C
 - C is corrected from background
 - $\|C\| \le M_{max} \|Q\|$
- $A(Q + \delta Q) = C + \delta C \text{ or } A \delta Q = \delta C$
 - $\|\delta C\| \ge M_{min} \|\delta Q\|$
 - $\|C\|.M_{min}\|\delta Q\| \le M_{max}\|Q\|\|\delta C\|$

$$\frac{\|\delta Q\|}{\|Q\|} \leq \kappa(A) \left(\frac{\|\delta C\|}{\|C\|}\right)$$

If is greater than ~20 We cannot separate the different sources

Optimisation of pseudo-sensors (matrix C)

9-12 October 2017 Bologna, Italy

Atmospheric transfert coef. (matrix A)

Matrix A is computed using back-plume stochastic lagrangian model (MSS in ARIA View Package)

nonzonital gnu resolution	5 meters
Domain dimension 1 kilon	neter x 1 kilometers
Number of vertical levels	21
Lowest / Highest vertical level	8 / 600 meters
Number of receptors 27 (for	the 17 th November)
29 (fo	r the 5 th December)
Number of sources 4 (for	the 17 th November)
5 (for	the 5 th December)
Computation of source-receptor E	ach 5 minutes
matrix	
Estimation of emission rates Ea	ach 15 minutes

Results

17 November 2017
<u>Before</u> mitigation actions
The global emission for the site: <u>3.85 t/day</u>

5 December 2017 <u>After</u> mitigation actions The global emission for the site : <u>2.92 t/day</u>

The AMIS algorithm

Find the minimum of a cost function

- The Adaptive Multiple Importance Sampling (AMIS) algorithm is based on an sampling scheme, where a target distribution (namely the posterior distribution) is approximated by weighted samples from a proposition distribution
- The "Adaptive" algorithm improves the standard importance sampling procedure by:
 - Allowing the update of the proposal distribution, which can be chosen as a flexible combination of well-known kernels (e.g. a multivariate Gaussian mixture)
 - Optimally recycling the importance weights at each iteration to fully exploit the full available information and accelerate the convergence

Current version of the software: a unique point source → here 4 or 5 area sources !

Rajaona H., Septier F., Delignon Y., Armand P., Olry C., Albergel A., Moussafir J. 2015: "An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release" Atmospheric Environment Volume 122, December 2015, Pages 748-762

The AMIS algorithm

Test of the software "as is" on the 17 Nov 2017

Result 17 Nov 2017

- Surprise : good order of magnitude !
 - Back-plume method : 3.85 tons/day
 - AMIS method : 3.46 tons/day
- What we should expect with a single source
 - A virtual point source upwind
 - If in the area source → a large underestimation

Outline

ARIA

Context

- CH₄ produced by landfills
- GHG MRV and mitigation

Inverse modeling approach

- Experimental site
- Measurement protocol
- Multi-sources back-plume approach
- AMIS adaptive Bayesian approach

Dual tracer method

- Methodology
- Measurement protocol
- Results

Conclusion

Dual tracer experiment

HARMO

Experimental set

- Dual gas is acetylene C₂H₂
- A C₂H₂ bottle and suitable flowmeter
- Same mobile C₂H₂ /CH₄ PICARRO (G2203) installed in car
- Additional measurements with G2201Piacarro CDRS (carbon isotopes apportionment)
- Principle
 - Release a known gas (here C2H2) in the same place of the unknown emission (here CH4)
 - $\boldsymbol{Q}_{CH4} = \boldsymbol{Q}_{C2H2} \frac{A_{CH4}M_{CH4}}{A_{C2H2}M_{C2H2}}$
 - *Q*_{CH4} targeted emission
 - Q_{C2H2} is the know release of acetylene (flowmeter + the bottle is weighted before and after the release (kg/h))
 - $\frac{A_{CH4}}{A_{C2H2}}$ ratio of area peaks for the two gases (Picarro measurements)
 - $\frac{M_{CH4}}{M_{C2H2}}$ ratio of molar mass

Dual tracer experiment

13 Sept 2016 Preliminary survey (before any mitigation actions)

- Identifying pics and order of magnitude
- Optimization of the C2H2 release
- Optimization of ambient concentration measurement protocol

Variable (unit)	Typical value (during measurement)	Range of value (min/max)	
Temperature (°C)	28	23/31	
Air Pressure (hPa)	1011	1009/1013	
Wind speed (m/s)	5	2.7/12.1	
Wind direction (degrees) (coming from the direction)	SE	ESE/SSE	
Rain (mm/3h)	0	0/1.4	

Dual tracer experiment

19 Sept 2016 Dual gas tracer release

Variable (unit)	Typical value (during measurement)	Range of value (min/max)
Temperature (°C)	20	15/20
Air Pressure (hPa)	1018	1018/1020
Wind speed (m/s)	5	3.1/6.7
Wind direction (degrees) (coming from the direction)	NNW	NNW/WNW
Rain (mm/3h)	0.2	0/0.3

Time series downwind (14 transects)

Moyenne (kg/j)

 5813 ± 1318

Ouline

ARIA

Context

- **CH**₄ produced by landfills
- GHG MRV and mitigation

Inverse modeling approach

- Experimental site
- Measurement protocol
- Multi-sources back-plume approach
- AMIS adaptive Bayesian approach
- Dual tracer method
 - Methodology
 - Measurement protocol
 - Result

Conclusion

Conclusion

Application to a mitigation policy

	Units	Reverse Modelling (1)	Dual Tracer (2)	((1)- (2)) /(2)
Before Mitigation (dual tracer, no reverse modelling)	t CH ₄ _{emitted} /d	5.8	5.8 ± 1.3	
After phase I (North west of site : biogas network improvement)	t CH ₄ _{emitted} /d	3.85	3.6 ± 1,3	- 6,5%
After phase II (cover and biogas network improvement)	t CH ₄ _{emitted} /d	2.92	2 ± 0,5	-31%

On progress

- In 2017: installation of an additional cogeneration engine corresponding to the amount of CH4 recovered and it is working!
- Test on an other site in Netherland (with TNO)

Acknowledgments

To HARMO18 Organizers ! For your attention !

For Partners of the WASTE MITI 2 consortium

For Climate KIC Contribution

