

Adaptation of the Lagrangian module of a CFD code for atmospheric dispersion of pollutants in complex urban geometries and comparison with existing Eulerian results

> Meissam Bahlali, E. Dupont, B. Carissimo CEREA – EDF R&D, Chatou, France

October 11, 2017 HARMO18, Bologna, Italy

1. CONTEXT AND OBJECTIVES

2. HOW TO MODEL ATMOSPHERIC DISPERSION?

3. LAGRANGIAN STOCHASTIC MODELS

4. VALIDATION CASE: CONTINUOUS POINT RELEASE WITH UNIFORM MEAN SPEED AND TURBULENT DIFFUSIVITY

1. CONTEXT AND OBJECTIVES

2. HOW TO MODEL ATMOSPHERIC DISPERSION?

3. LAGRANGIAN STOCHASTIC MODELS

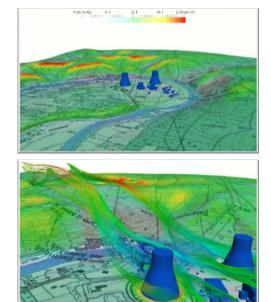
4. VALIDATION CASE: CONTINUOUS POINT RELEASE WITH UNIFORM MEAN SPEED AND TURBULENT DIFFUSIVITY

CONTEXT AND OBJECTIVES

Source: R. Bresson, EDF R&D

Context:

- Turbulent dispersion = advection + turbulent diffusion.
 - wide range of eddies in the atmospheric boundary layer which all participate in their own way to the transport and diffusion of the cloud
 - in particular: turbulent dispersion is not as effective close to the emission source as opposed to further away → need to correctly model the effect of the different turbulent structures.
- Multiple families of models: Gaussian, Eulerian (SGDH, GGDH, AFM, DFM...), Lagrangian models...



Objectives:

- To adapt of the Lagrangian stochastic model of the CFD code Code_Saturne in order to simulate near-field dispersion of pollutants in complex environments including buildings and taking into account atmospheric stratification.
- □ To complete the existing Eulerian modelling of these phenomena → compare and clarify the differences between the approaches, making use of the same CFD code.

1. CONTEXT AND OBJECTIVES

2. HOW TO MODEL ATMOSPHERIC DISPERSION?

3. LAGRANGIAN STOCHASTIC MODELS

4. VALIDATION CASE: CONTINUOUS POINT RELEASE WITH UNIFORM MEAN SPEED AND TURBULENT DIFFUSIVITY

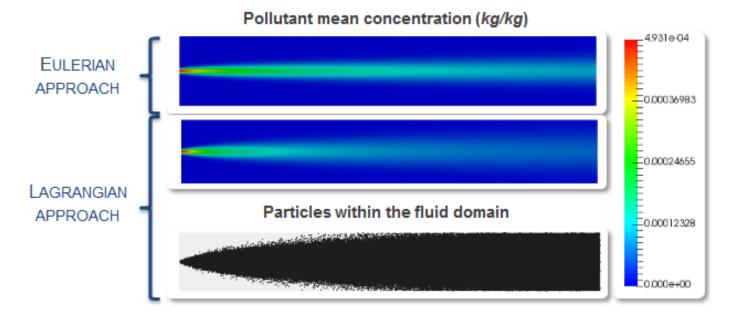
PRESENTATION OF THE APPROACH

• Calculation of the flow field ("continuous phase"): mean Navier-Stokes equations

$$\begin{cases} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial (\bar{\rho} \widetilde{u}_i)}{\partial t} = 0\\ \frac{\partial (\bar{\rho} \widetilde{u}_i)}{\partial t} + \frac{\partial (\bar{\rho} \widetilde{u}_i \widetilde{u}_j)}{\partial x_j} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_i} (\overline{\tau_{ij}} - \bar{\rho} \overline{u'_i u'_j}) - \bar{\rho} g \delta_{iz} \end{cases}$$

- Calculation of the dispersion of the pollutants within this flow field (*"dispersed phase"*): 2 main types of models
 - Eulerian/Eulerian models
 - Eulerian/Lagrangian models

EULERIAN AND LAGRANGIAN APPROACHES



EULERIAN APPROACH

Mean advection-diffusion equation for a scalar c:

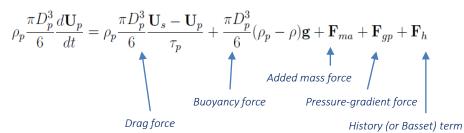
$$\frac{\partial \bar{c}}{\partial t} + \bar{u}_j \frac{\partial \bar{c}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(D \frac{\partial \bar{c}}{\partial x_j} - \overline{u'_j c} \right) + \bar{S} + \bar{R}$$

Velocity and turbulence fields → solved by the CFD code
 Code_Saturne using RANS models with classical k-ε or R_{ij}-ε closures adapted to the atmosphere and complex geometries

\rightarrow APPROACH THAT HAS BEEN USED AT EDF R&D SO FAR.

LAGRANGIAN APPROACH

Particle's equation of motion:



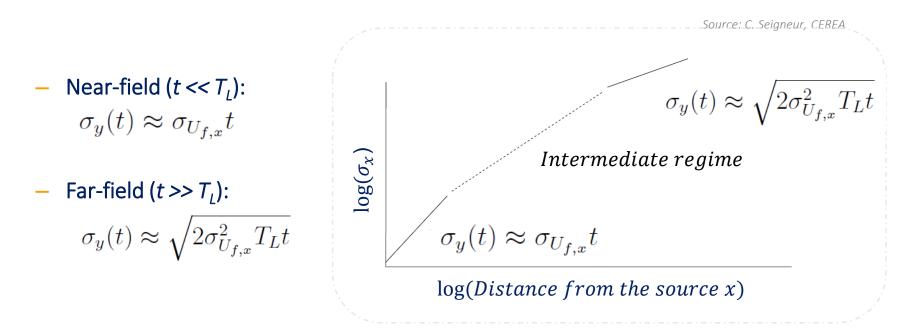
where: $U_s(t) = U_f(X(t),t)$ is the velocity of the fluid sampled through the trajectory of the particle

7

WHY USE A LAGRANGIAN MODEL?

• **Diffusion theory** [Taylor, 1921] → if we consider particle dispersion from a point source in stationary isotropic turbulence, there are 2 different regimes of diffusion:

$$\sigma_y^2(t) = 2\sigma_{U_{f,x}}^2 \int_0^t (t-s) R_{L,x}(s) \,\mathrm{d}s$$



WHY USE A LAGRANGIAN MODEL?

• Eulerian approach used at EDF R&D so far: RANS with *k-e* closure. However: turbulent viscosity models imply a turbulent diffusivity *K* independent from the distance to the source and:

$$\sigma_y(t) = \sqrt{2Kt}$$
 where: $K = C_\mu \frac{k^2}{\epsilon}$ $\propto \sqrt{t}$

→ This model is unable to reproduce near-field behaviour.

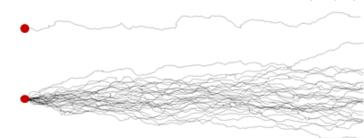
• Lagrangian approach with Langevin model yields [Pope, 2001]:

$$R_L(s) = exp(-|s|/T_L)$$

hence:

$$\sigma_y^2(t) = 2\sigma_{U_{f,x}}^2 T_L[t - T_L(1 - e^{-t/T_L})] \xrightarrow[t \to T_L]{t \to T_L} \sigma_y(t) \approx \sigma_{U_{f,x}} t$$

→ This model does discriminate the two different diffusion regimes. Note that: an Eulerian RANS model not based on turbulent viscosity approx. but with a complete transport of turbulent scalar fluxes ("DFM") would also have this property → work in progress.



Source: RECORD report (ECL)

• Equation of motion solved for each particle:

Particles' displacement within a turbulent flow

$$\rho_p \frac{\pi D_p^3}{6} \frac{d\mathbf{U}_p}{dt} = \rho_p \frac{\pi D_p^3}{6} \frac{\mathbf{U}_s - \mathbf{U}_p}{\tau_p} + \frac{\pi D_p^3}{6} (\rho_p - \rho) \mathbf{g} + \mathbf{F}_{ma} + \mathbf{F}_{gp} + \mathbf{F}_h$$

where: $U_s(t) = U_f(X(t), t)$ is the velocity of the fluid sampled through the trajectory of the particle

- → This equation needs closure. Indeed: $\mathbf{U}_{s}(t) = \mathbf{U}_{f}(\mathbf{X}(t), t) = ?$
- Code_Saturne with RANS models only provides: $\langle \mathbf{U}_{f}(\mathbf{X}(t),t) \rangle$

→ PDF (PROBABILITY DENSITY FUNCTION) METHODS:

development of a Lagrangian stochastic model to reconstruct the turbulence effects

1. CONTEXT AND OBJECTIVES

2. HOW TO MODEL ATMOSPHERIC DISPERSION?

3. LAGRANGIAN STOCHASTIC MODELS

4. VALIDATION CASE: CONTINUOUS POINT RELEASE WITH UNIFORM MEAN SPEED AND TURBULENT DIFFUSIVITY

MODEL FOR U_s: *SIMPLE LANGEVIN MODEL* [POPE, 2001]

Where:
$$T_{L,i}^* = \frac{T_{L,i}}{1 + \beta \frac{|\mathbf{U}_f - \mathbf{U}_p|}{\sqrt{\frac{2}{3}k}}}$$
 and $\beta = \frac{T_{L,i}}{T_{E,i}}$ and $T_{L,i} = \frac{1}{\frac{1}{2} + \frac{3}{4}C_0} \frac{k}{\epsilon}$

MODEL FOR U_s: OTHER MODELS...

- Let us consider, for the sake of simplicity, the case of fluid particles: $\mathbf{U}_s = \mathbf{U}_p$
- 2 ways of modelling the evolution of the velocity field:
 - Through the instantaneous velocity \mathbf{U}_{p}
 - Through the fluctuating velocity $\mathbf{U}_{p}' = \mathbf{U}_{p} \langle \mathbf{U}_{f} \rangle \Rightarrow d\mathbf{U}_{p}' = d\mathbf{U}_{p} d \langle \mathbf{U}_{f} \rangle$

Model using:	Formulation
Instantateous velocity	$dU_{p,i} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} dt - \frac{U'_{p,i}}{T_{L,i}} dt + \sqrt{C_0 \overline{\epsilon}} dW_i$
Fluctuating velocity	$dU'_{p,i} = \left(\frac{\partial \overline{U'_{f,i}U'_{f,j}}}{\partial x_j} - U'_{p,j}\frac{\partial \overline{U_{f,i}}}{\partial x_j}\right)dt - \frac{U'_{p,i}}{T_{L,i}}dt + \sqrt{C_0\overline{\epsilon}}dW_i$

[Minier, Chibbaro, Pope, 2014]

Obtained using

Navier-Stokes eq.

MODEL FOR U_s: OTHER MODELS...

Model using:FormulationInstantateous velocity $dU_{p,i} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} dt - \frac{U'_{p,i}}{T_{L,i}} dt + \sqrt{C_0 \overline{\epsilon}} dW_i$ Fluctuating velocity $dU'_{p,i} = \left(\frac{\partial \overline{U'_{f,i}U'_{f,j}}}{\partial x_j} - U'_{p,j} \frac{\partial \overline{U_{f,i}}}{\partial x_j}\right) dt - \frac{U'_{p,i}}{T_{L,i}} dt + \sqrt{C_0 \overline{\epsilon}} dW_i$

• Example: [Thomson, 1987] model \rightarrow $dU'_{p,i} = a_i dt + b_{ij} dW_i$ where:

$$a_{i} = -\frac{C_{0}\epsilon}{2}\delta_{ij}\Gamma_{jk}U'_{p,k} + \frac{\Phi_{i}}{g_{a}} \qquad \text{and} \quad \frac{\Phi_{i}}{g_{a}} = \overline{U_{f,l}}\frac{\partial\overline{U_{f,i}}}{\partial x_{l}} + \frac{\partial\overline{U_{f,i}}}{\partial x_{j}}(U_{p,j} - \overline{U_{f,j}}) + \qquad - \begin{array}{c} \text{Gaussian turbulence hypothesis} \\ - \begin{array}{c} \text{Complicated formulation} \\ \frac{1}{2}\frac{\partial\tau_{il}}{\partial x_{l}} + \frac{1}{2}\overline{U_{f,m}}\frac{\partial\tau_{il}}{\partial x_{m}}\Gamma_{lj}(U_{p,j} - \overline{U_{f,j}}) + \\ & \\ \frac{1}{2}\frac{\partial\tau_{il}}{\partial x_{k}}\Gamma_{lj}(U_{p,j} - \overline{U_{f,j}})(U_{p,k} - \overline{U_{f,k}}) \end{array}$$

- Instantateous velocity: pressure-gradient term clearly visible
- *Fluctuating velocity:* term hidden behind (

$$\left(\frac{\partial \overline{U'_{f,i}U'_{f,j}}}{\partial x_j} - U'_{p,j}\frac{\partial \overline{U_{f,i}}}{\partial x_j}\right) dt$$

MODEL FOR U_s: OTHER MODELS...

WHY ARE WE CONCERNED ABOUT THE PRESENCE OF THE PRESSURE-GRADIENT TERM IN OUR MODELS?

- Well-mixed condition problem: *an initially uniform particle concentration in a turbulent flow should remain uniform*
 - → condition that any Lagrangian stochastic model needs to meet
 - → consistency with the mean Navier-Stokes equations
- [Minier, Chibbaro, Pope, 2014] : if the pressure-gradient term does not appear in the formulation of the model, then the well-mixed condition may not be fulfilled
- Note: need of full pressure field.

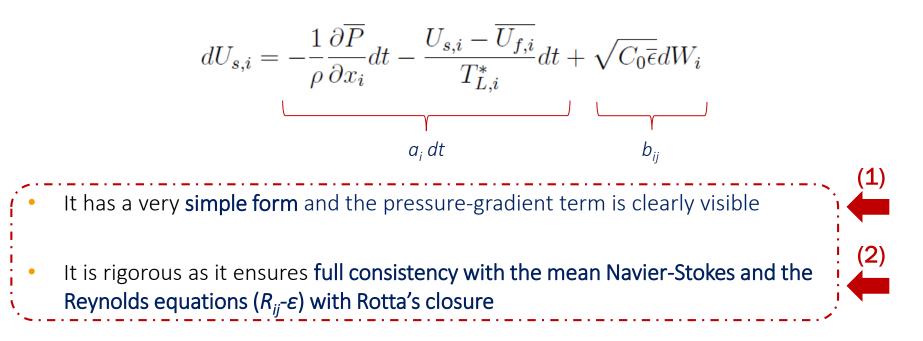
OUR REASONS FOR GOING FURTHER WITH THE SIMPLE LANGEVIN MODEL OF [POPE, 2001]

$$dU_{s,i} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} dt - \frac{U_{s,i} - \overline{U_{f,i}}}{T_{L,i}^*} dt + \sqrt{C_0 \overline{\epsilon}} dW_i$$

$$a_i dt \qquad b_{ij}$$

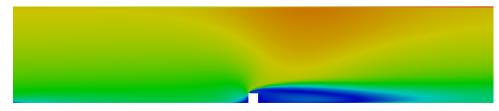
- It has a very **simple form** and the pressure-gradient term is clearly visible
- It is rigorous as it ensures full consistency with the mean Navier-Stokes and the Reynolds equations $(R_{ij}-\varepsilon)$ with Rotta's closure
- No hypothesis is made on the PDF of the velocity of the particles
- To our knowledge, it has not previously been used in the context of atmospheric dispersion

OUR REASONS FOR GOING FURTHER WITH THE SIMPLE LANGEVIN MODEL OF [POPE, 2001]

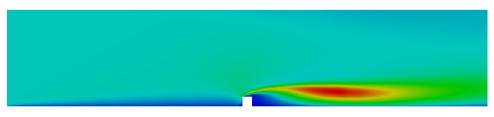


- No hypothesis is made on the PDF of the velocity of the particles
- To our knowledge, it has not previously been used in the context of atmospheric dispersion

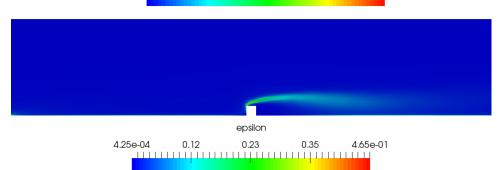
Inhomogeneous turbulence: obstacle within a boundary layer





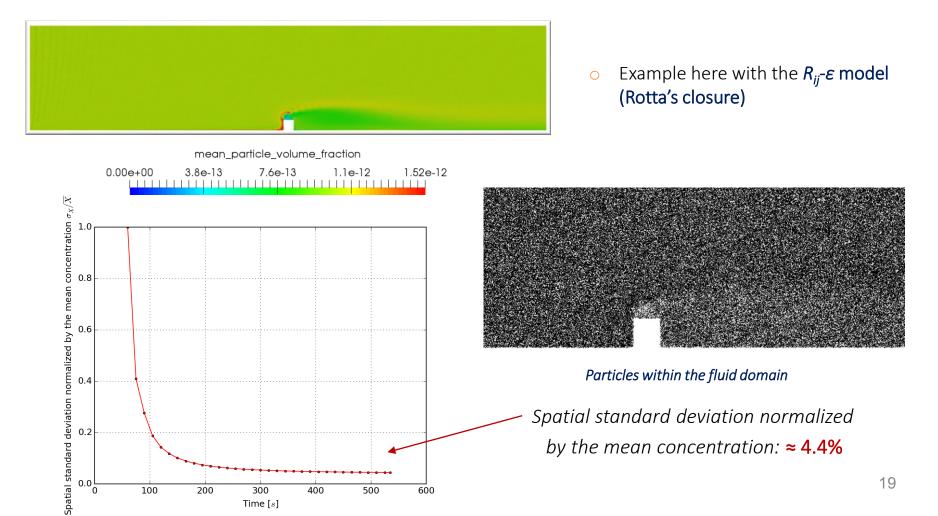


k_Rij 8.07e-04 0.016 0.031 0.046 6.07e-02

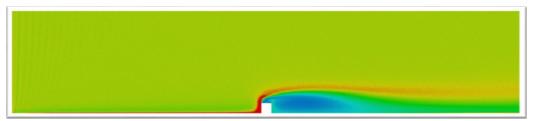


EULERIAN FLOW FIELD

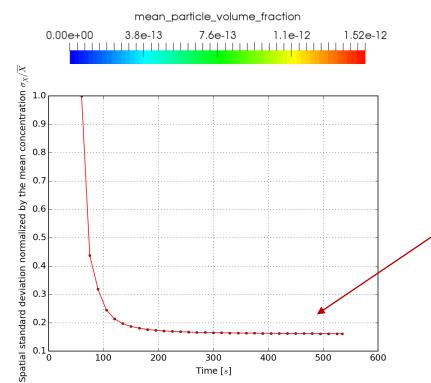
Inhomogeneous turbulence: obstacle within a boundary layer

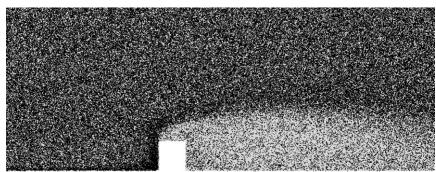


(1) What happens if we do not take into account the pressure-gradient term?



$$dU_{s,i} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_i} dt - \frac{U_{s,i} - \overline{U_{f,i}}}{T_{L,i}^*} dt + \sqrt{C_0 \overline{\epsilon}} dW_0$$



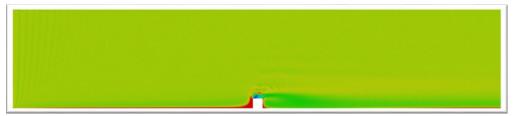


Particles within the fluid domain

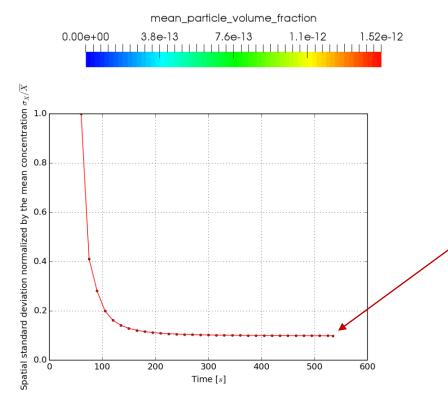
Spatial standard deviation normalized by the mean concentration: ≈ 16.2% > 4.4%! ACCUMULATION OF PARTICLES

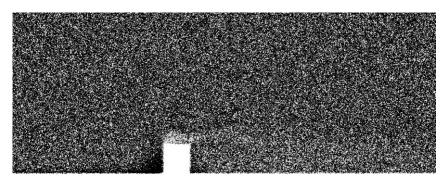
→ SHOWS THE IMPORTANCE OF THE PRESSURE-GRADIENT TERM IN THE LANGEVIN EQUATION

(2) What happens if the turbulence model used for the flow is not consistent with the SLM?



- Model fully consistent with the SLM: *R_{ij}-ε* model with Rotta's closure
- Example here with the k- ε model





Particles within the fluid domain

Spatial standard deviation normalized by the mean concentration: ≈ 9.9% >> 4.4%! ACCUMULATION OF PARTICLES

→ SHOWS THE IMPORTANCE OF MODELLING THE FLOW WITH A R_{IJ}-EPS MODEL (ROTTA'S CLOSURE)

1. CONTEXT AND OBJECTIVES

- 2. HOW TO MODEL ATMOSPHERIC DISPERSION?
 - **3.** LAGRANGIAN STOCHASTIC MODELS

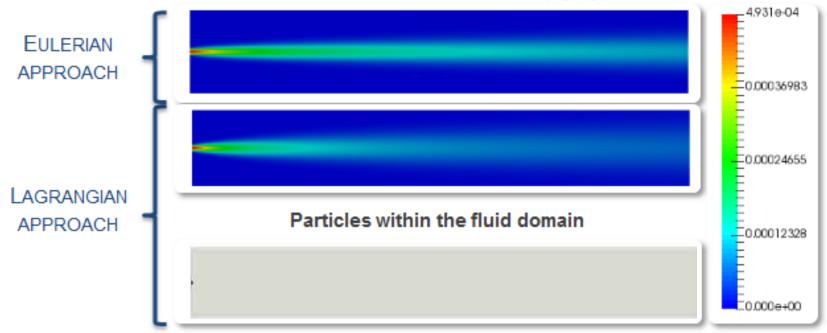
4. VALIDATION CASE: CONTINUOUS POINT RELEASE WITH UNIFORM MEAN SPEED AND TURBULENT DIFFUSIVITY

CALCULATION OF THE DISPERSED PHASE

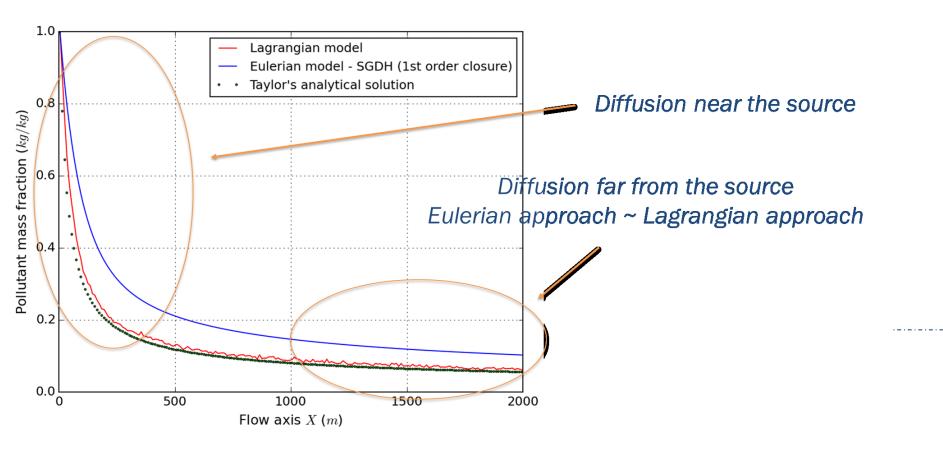
Taylor's analytical solution:

$$\frac{c}{Q} = \frac{1}{\sqrt{2\pi}U\sigma_x} \text{ with: } \sigma_x = \sqrt{\frac{2}{3}k} \frac{x}{U\sqrt{1+\frac{x}{2UT_L}}}$$

Pollutant mean concentration (kg/kg)



CALCULATION OF THE DISPERSED PHASE



Maximum concentration (kg/kg) along the flow axis Comparison of the two approaches

CONCLUSIONS AND PERSPECTIVES

Conclusions:

 Objective: development of a Lagrangian stochastic tool to simulate atmospheric dispersion simultaneously with Eulerian dispersion

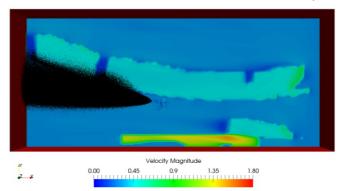
□ *Simple Langevin Model* of [Pope, 2001] : to our knowledge, never used in the context of atmospheric dispersion \rightarrow yet, many advantages:

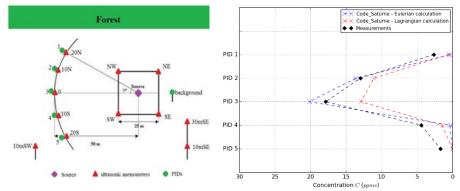
- Pressure-gradient term included in an evident manner \rightarrow *no spurious drifts*
- Full consistency with the R_{ij} -eps model (Rotta's closure) \rightarrow careful when calculating the continuous phase!
- Validation of the well-mixed criterion: our model performs well, even with an obstacle within a boundary layer
- Validation by checking with analytical solution: with our Lagrangian model, distinction of the two regimes of diffusion

CONCLUSIONS AND PERSPECTIVES

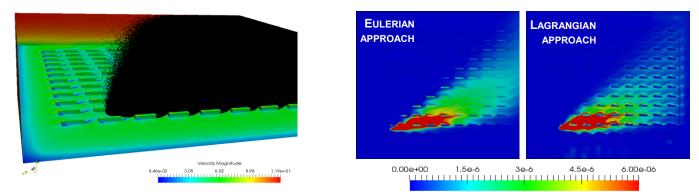
Perspectives:

validation on SIRTA campaign with R_{ij} - ε model (consistency issues between Navier-Stokes/Langevin eq.)





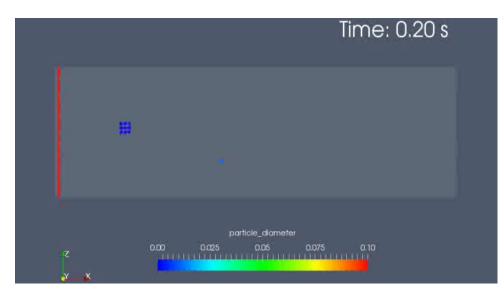
Validation on **MUST campaign** (Mock Urban Setting Test), Utah's desert, USA. Presence of obstacles.



Preliminary results for case 2681829 (neutral conditions) Other tested cases: 2681849 (neutral conditions), 2640246 (stable conditions)

 $\square R_{ij}$ - ε model with DFM (*Differential Flux Model*) for the scalars

THANK YOU FOR YOUR ATTENTION



References:

- Arya, S. P., 1999: Air pollution meteorology and dispersion (Vol. 6). Edition, New York: Oxford University Press.
- Minier, J.-P. et E. Peirano. 2001, *The PDF approach to turbulent polydispersed two-phase flows*, Physics Reports
- Minier, J.-P., S. Chibbaro et S. B. Pope. 2014, Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows, Physics of Fluids
- Pope, S. B. 1994, Lagrangian PDF methods for turbulent flows, Annual review of fluid mechanics
- Pope, S. B. 2001, *Turbulent flows*
- Thomson, D. 1987, Criteria for the selection of stochastic models of particle trajectories in turbulent flows, Journal of Fluid Mechanics

