Coupled Urban Outdoor and Indoor Synthetic Dispersion Environments

P.E. Bieringer, M.D. Sohn, H. Jonker, A. Piña, G. Bieberbach, and D. Lorenzetti

October 10, 2017

This research was funded in part by the Defense Threat Reduction Agency and performed under U.S. Department of Energy Contract number DE-AC02- 05CH11231. Aeris research funded as a subcontractor to Lawrence Berkeley National Laboratory (LBNL).

Distribution A: Approved for public release, distribution is unlimited

WEATHER FINECASTING

Atmospheric Science and Engineering Solutions

Outline

- Background and enabling technology
 - Motivation for a coupled urban and interior virtual CBRN environment
 - Virtual environment system design
 - Graphics processing unit (GPU) based atmospheric dispersion modeling
- GPU-Large Eddy Simulation (LES) system validation effort
- GPU-LES system demonstration
- Looking forward

Outline

- Background and enabling technology
 - Motivation for a coupled urban and interior virtual CBRN environment
 - Virtual environment system design
 - Graphics processing unit (GPU) based atmospheric dispersion modeling
- GPU-Large Eddy Simulation (LES) system validation effort
- GPU-LES system demonstration
- Looking forward

Indoor and Outdoor Air Quality

(Importance of Coupling Indoor/Outdoor Dispersion Models)

UNCLASSIFIED

- Most of the world's population lives in urban locations
 - In the US, > 80%
 - Urban populations are expected to continue to grow
- People spend the majority of their time indoors
 - In the US, > 86%
- Urban indoor environments are some of the highest impact locations for health effects from pollution

Image Sources: - http://www.nhm.org/nature/sites/default/files/blog_images/urbanpop-edited.png

- Klepeis NE, Nelson WC, Ott WR et al., 2001: The National Human Activity-Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants *Journal of Exposure Analysis and Environmental Epidemiology*. 11(3):231-252.

U.S. National Human Activity Pattern Survey (NHAPS) (Nation – Percentage Time Spent)

Urban and Outdoor Pollution Dispersion Models

(Virtual Environment System Design)

Use Improve Our Understanding of Indoor-Outdoor Contaminant Exchanges

UNCLASSIFIED

Image sources:

urces: - Lundquist, K.A., F.K. Chow, and J.K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the wrf model. *Mon. Wea. Rev.*, **140**, 3936–3955

- Jeff Weil, "Evaluation of a GPU-Based Large-Eddy Simulation for Dispersion in the Atmospheric Boundary Layer", Presented at the AMS - 19th Conference on Applications of Air Pollution Meteorology, 10-14 January, 2016

W ¥ 🧎

Enabling Technology

(GPU Resident Atmospheric Simulation Program (GRASP))

WEATHER FINECASTING

Publications:

Schalkwijk et al. *BAMS 2012* Schalkwijk et al. *MWR 2015* Schalkwijk et al. *BAMS 2015* Schalkwijk et al. *BLM 2016*

UNCLASSIFIED

- CPU is optimized to perform sequential operations
 - Multiple ALU's (cores) enable some parallel performance
 - Typically has a large cache memory availability compared to GPU
- GPU is optimized to perform highly parallel operations
 - Numerous ALU's (1000's on a single GPU card)
 - Faster and more advanced memory interfaces
 - Currently in a phase of rapid hardware technology advancements

Image Source: - http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.jpg

Atmospheric Modeling

(Past Practices for "GPU-Accelerated" HPC Computing)

Atmospheric Modeling on a CPU/GPU Computer

UNCLASSIFIED Atmospheric Modeling (Next Generation of GPU HPC Computing)

GPU Resident Modeling

UNCLASSIFIED This Technology Enables (Ensembles of Single Realization Dispersion Solutions)

BERKELEY LAE

UNCLASSIFIED

- GPU provides substantial computational advantage over comparable CPU-based solution
- Example: 1-hr simulation
 - 8 core Intel Xenon: 1hr 32 mins
 - Nvidia K40: 36 seconds
- Rapid technology advances

GPU vs. CPU Floating Point Operations

Puffs Released Into Unstable Outdoor Conditions

Outline

- Background and enabling technology
 - Motivation for a coupled urban and interior virtual CBRN environment
 - Virtual environment system design
 - Graphics processing unit (GPU) based atmospheric dispersion modeling
- GPU-Large Eddy Simulation (LES) system validation effort
- GPU-LES system demonstration
- Looking forward

GPU-LES Dispersion Model System Validation (Incremental Approach From More Simple to More Complex)

- Meteorological validation: Completed
- Open terrain atmospheric transport and dispersion (AT&D): *In process*
 - Completed for unstable boundary layer
 - Neutral and stable boundary layer are in process
- "Building aware" meteorology and AT&D: Collecting data sets and developing simulations
 - Mock urban setting test (MUST)
 - 2015 Jack Rabbit II urban container testing (JRII-2015)
 - Joint Urban 2003 (JU2003)
- Indoor-outdoor contaminant transport: No activity yet

GPU-LES Dispersion Model System Validation (Incremental Approach From More Simple to More Complex)

- Meteorological validation: Completed
- Open terrain atmospheric transport and dispersion (AT&D): *In process*
 - Completed for unstable boundary layer
 - Neutral and stable boundary layer are in process
- "Building aware" meteorology and AT&D: Collecting data sets and developing simulations
 - Mock urban setting test (MUST)
 - 2015 Jack Rabbit II urban container testing (JRII-2015)
 - Joint Urban 2003 (JU2003)
- Indoor-outdoor contaminant transport: No activity yet

Open Terrain Validation (Model Simulation Design)

- GPU-LES configuration patterned after Weil et al. 2004 & 2012
 - Horizontal resolution: ~50 m vertical resolution: ~20 m
 - Domain: ~13 x ~13 km x ~2 km (Larger than Weil et al. 2004)
 - CBL depth: 1 km and heat flux = 0.24 m s⁻¹ K
 - Wind Speed: ~3 ms⁻¹ in convective boundary layer
- Release characteristics
 - Continuous near surface point release
 - 130 uncorrelated realizations produced
 - Time and space differences used to create the realizations
- Dispersion characteristics examined
 - Plume height normalized by the boundary layer height
 - Surface crosswind integrated concentration (CWIC)
 - Vertical profiles of CWIC
 - Surface crosswind dispersion
 - Vertical dispersion

RIS

UNCLASSIFIED

Open Terrain Validation (Model Simulation Design)

Allow the Turbulence to Spin Up in the Model

UNCLASSIFIED

UNCLASSIFIED Open Terrain Validation (Model Simulation Design)

Create Uncorrelated Dispersion Realizations

Open Terrain Validation (Model Simulation Design)

UNCLASSIFIED

UNCLASSIFIED Open Terrain Validation (Plume Height Calculations)

Image Source: Weil, J.C., P.P. Sullivan, E.G. Patton, C. Moeng, 2012: Statistical Variability of Dispersion in the Convective Boundary Layer: Ensembles of Simulations and Observations. BLM, 145, 185–210 RIS

UNCLASSIFIED

Open Terrain Validation

(Cross Wind Integrated Concentration (CWIC) Calculations)

Image Source: Weil, J.C., P.P. Sullivan, E.G. Patton, C. Moeng, 2012: Statistical Variability of Dispersion in the Convective Boundary Layer: Ensembles of Simulations and Observations. *BLM*, 145, 185–210 UNCLASSIFIED

UNCLASSIFIED **Open Terrain Validation** (CWIC Vertical Profile Calculations)

Weil et al. (2012) Analysis

UNCLASSIFIED **Open Terrain Validation**

(Surface Cross Wind Integrated Concentration (CWIC) Calculations)

UNCLASSIFIED **Open Terrain Validation** (Surface Cross Wind Dispersion Calculations)

UNCLASSIFIED

Image Source: Weil, J.C., P.P. Sullivan, E.G. Patton, C. Moeng, 2012: Statistical Variability of Dispersion in the Convective Boundary Layer: Ensembles of Simulations and Observations. BLM, 145, 185–210 RIS

UNCLASSIFIED **Open Terrain Validation** (Surface Vertical Dispersion Calculations)

Outline

- Background and enabling technology
 - Motivation for a coupled urban and interior virtual CBRN environment
 - Virtual environment system design
 - Graphics processing unit (GPU) based atmospheric dispersion modeling
- GPU-Large Eddy Simulation (LES) system validation effort
- GPU-LES system demonstration
- Looking forward

Demonstration

(Open Terrain Example)

Open terrain simulation specifications

- 128 x 128 x 64 grid
- Horizontal resolution: 20 m
- Vertical resolution ~17 m
- Simulation scenario
 - Boundary layer (BL) depth: 550 m
 - Surface heating: 50 W/m²
 - Winds:
 - 3 m/s in PBL
 - 4 m/s above PBL
- Simulation time on NVIDIA K40
 - 2880 ALU cores
 - 12 Gb of onboard memory
 - 1-hr simulation takes ~ 36s

UNCLASSIFIED

UNCLASSIFIED **Demonstration**

(Open Terrain Example)

Caures

Outline

- Background and enabling technology
 - Motivation for a coupled urban and interior virtual CBRN environment
 - Virtual environment system design
 - Graphics processing unit (GPU) based atmospheric dispersion modeling
- GPU-Large Eddy Simulation (LES) system validation effort
- GPU-LES system demonstration
- Looking forward

UNCLASSIFIED Looking Forward (Incorporation of Buildings)

UNCLASSIFIED

Image Source: Davidson, M., Mylne, K., Jones, C., Phillips, J., Perkins, R., Fung, J., Hunt, J., 1995. Plume^x (m) through large groups of obstacles e a field investigation. Atmos. Environ. 29, pp. 3245-3256. RIS

UNCLASSIFIED Looking Forward (Linking the Indoors to the Outdoors)

Concentration [kg m⁻³]

Two Zone Box Model

Image Courtesy of Darrel Johnston SWRI – 2015

Demonstration

(Building Aware Example)

- "Building-aware" terrain simulation specifications
 - 256 x 256 x 128 grid
 - Horizontal resolution: ~4 m
 - Vertical resolution ~8 m
- Simulation scenario
 - Boundary layer (BL) depth: 550 m
 - Surface heating: 25 W/m²
 - Winds:
 - ~3 m/s in PBL
- Simulation time
 - 2880 ALU cores
 - 12 Gb of onboard memory

1-hr simulation takes ~ 155s

30

UNCLASSIFIED **Demonstration**

(Building Aware Example)

31

UNCLASSIFIED