DATA ASSIMILATION AT LOCAL SCALE TO IMPROVE CFD SIMULATIONS OF DISPERSION AROUND INDUSTRIAL SITES AND URBAN NEIGHBOURHOODS

C. Defforge¹, M. Bocquet¹, R. Bresson¹, P. Armand², and B. Carissimo¹

 $^1{\sf CEREA},$ Joint laboratory École des Ponts ParisTech / EDF R&D, Université Paris-Est, Marne-Ia-Vallée, France $^2{\sf CEA},$ DAM, DIF, F-91297 Arpajon, France

Harmo18 - Mathematical problems in air quality modelling

Introduction

Context Introduction to data assimilation

Methods

Shallow water model Back and forth nudging Iterative ensemble Kalman smoother

Results

Experiments BFN results IEnKS results

Conclusions & Perspectives

MICRO-METEOROLOGY APPLICATIONS

Dispersion in built up environment

City of Toulouse

MUST experiment

Estimation of local wind fields

CONTEXT

- Atmospheric dispersion modelling requires meteorological inputs (wind, turbulence, etc.)
- ► Local wind fields (urban neighbourhoods, surroundings of industrial sites, etc.) have very complex structures ⇒ difficult to simulate with CFD
- CFD simulations could be improved using available observations
- Objective: Develop local-scale data assimilation methods

LOCAL CED SIMULATIONS

4 / 14

INTRODUCTION TO DATA ASSIMILATION

- z^a: analysis = best estimate of control variables z, given all available information
 - ▶ model *M*,
 - observations y^o,
 - prior knowledge z^b,
 - etc.
- Nudging: add relaxation term to dynamical equations
 - Back and forth nudging (BFN)
- Filtering methods (e.g. Kalman filter) and Variational methods (e.g. 3D-Var)
 - Ensemble variational methods: iterative ensemble Kalman smoother/filter (IEnKS, IEnKF)

SHALLOW WATER MODEL

• Vertically averaged equations: $\frac{\partial \mathbf{X}}{\partial t} + \mathbf{M} \frac{\partial \mathbf{X}}{\partial x} = \mathbf{S}$

$$\mathbf{X} = \begin{pmatrix} h \\ u \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} u & h \\ g' & u \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 0 \\ -g' \frac{\partial z_f}{\partial x} \end{pmatrix}, \quad \text{and} \quad g': \text{ reduced gravity}$$

C. Defforge (CEREA) et al.

BACK AND FORTH NUDGING ALGORITHM

Iterative algorithm of forward and backward integrations with nudging ¹:

forward (f) or backward (b) Observation operator (F) $\frac{\partial \mathbf{X}_{k}^{f}}{\partial t} + \mathbf{M}^{f} \frac{\partial \mathbf{X}_{k}^{f}}{\partial x} = \mathbf{S} + \mathbf{K} \begin{bmatrix} \mathbf{y}^{o} - \mathcal{H}(\mathbf{X}_{k}^{f}) \end{bmatrix}$ for $0 \le t \le T$, $\delta t > 0$ (B) $\frac{\partial \mathbf{X}_{k}^{b}}{\partial t} + \mathbf{M}^{b} \frac{\partial \mathbf{X}_{k}^{b}}{\partial x} = \mathbf{S} - \widetilde{\mathbf{K}} \begin{bmatrix} \mathbf{y}^{o} - \mathcal{H}(\mathbf{X}_{k}^{b}) \end{bmatrix}$ for $T \ge t \ge 0$, $\delta t < 0$ k: BFN iteration

¹Auroux and Blum (2005, 2008); Auroux et al. (2013)

C. Defforge (CEREA) et al. Data assimilation at local scale to improve CFD simulations

BOUNDARY CONDITIONS FOR BEN ALGORITHM

ITERATIVE ENSEMBLE KALMAN SMOOTHER ¹

Cost function:

 $\mathcal{J} = \| \text{distance to prior} \|_{\textbf{P}^{-1}} + \| \text{distance to observations} \|_{\textbf{R}^{-1}}$

- Ensemble method \rightarrow estimation of error covariance matrices
- Iterative minimisation of \$\mathcal{J}\$ with Gauss-Newton algorithm

9 / 14

C. Defforge (CEREA) et al.

BFN RESULTS

- $\mathbf{K} = \widetilde{\mathbf{K}} = k \mathbf{H}^{\mathrm{T}}$ where $k \Delta t = 0.1$
- Convergence in \sim 5 iterations

C. Defforge (CEREA) et al.

IEnKS RESULTS

- Background ensemble: 3 members
- ▶ **P** = **I** and **R** = 0.1**I**
- Fast convergence (2-3 iterations)

C. Defforge (CEREA) et al.

CONCLUSIONS & PERSPECTIVES

- Both BFN algorithm and IEnKS help correcting BCs
- IEnKS more efficient here (less model integrations)
- Next steps:
 - More complex cases:
 - SW model: 2D
 - Code_Saturne: Vertical profiles of u
 - Localization or reduction of control vector size (e.g. principal component analysis)
 - Realistic cases with Code_Saturne (buildings, obstacles, etc.)

THANK YOU FOR YOUR ATTENTION

REFERENCES

- Auroux, D., P. Bansart, and J. Blum, 2013: An evolution of the back and forth nudging for geophysical data assimilation: application to burgers equation and comparisons. *Inverse Probl. Sci. Eng.*, **21**, 399–419.
- Auroux, D., and J. Blum, 2005: Back and forth nudging algorithm for data assimilation problems. *Comptes Rendus Math.*, **340**, 873–878.
- Auroux, D., and J. Blum, 2008: A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm. *Nonlin. Process. Geophys.*, 15, 305–319.
- Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman smoother. *Quart. J. Royal Meteor. Soc.*, **140**, 1521–1535.
- Sakov, P., D. S. Oliver, and L. Bertino, 2012: An Iterative EnKF for Strongly Nonlinear Systems. *Mon. Wea. Rev.*, **140**, 1988–2004.

IEnKS ALGORITHM

C. Defforge (CEREA) et al.