

Consiglio Nazionale delle Ricerche Istituto di Biometeorologia

Air Quality Impact of VOCs Emission from the Hazardous Waste Landfills Located in Giugliano (Na)

Sandro Finardi, Giuseppe Agrillo, Rita Baraldi, Giuseppe Brusasca, Luca Vitale, Giulia Carriero, Paolo Ciccioli, Sara Di Lonardo, Osvaldo Facini, Daniela Famulari, Daniele Gasbarra, Beniamino Gioli, Luisa Neri, Vincenzo Magliulo, Rossella Prandi, Gianni Tinarelli, Piero Toscano and Alessandro Zaldei

18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Bologna, 9-12 October 2017

Landfill gas

- Landfill gas (LFG) is generated by the decomposition of biodegradable waste in landfills.
- LFG consists of 40÷60% CO₂, 45÷60% CH₄, 5% N₂, and up to 1% VOCs.
- LFG emissions may continue for 20 to 50 years after initial dumping of wastes.

ITALY (2015) Solid waste disposal on land is responsible of 32.7% of CH₄ total national emissions (33.3% in 1990).

37.4% of urban waste disposed in landfills in 2015 (91.1% in 1990).

Co-disposal LFG is expected to include higher NM-VOC concentrations than Municipal Solid Waste LFG, that has not received significant quantity of toxic/hazardous compounds. (US-EPA, 2005).

VOCs in landfill gas

Biogas emission can increase the atmospheric levels of:

- benzene (carcinogenic);
- other aromatics (toluene, xylenes and styrene) affecting the human health;
- chlorinated VOCs such as trichloroethene and tetrachloroethene (carcinogenic).

EU Directive 1999/31/CE: biogas emitted from the uptake pipes of urban waste landfills must be conveyed to a purification unit, where the condensable components are removed by a chiller and a filter, to permit the safe use of gas for electricity generation.

Giugliano Landfills study area

Giugliano Landfills study area

Giugliano Landfills study area

Hazardous waste landfills in Giugliano (NA)

Ten landfills located within Giugliano municipality

- □ used for illegal dumping of industrial and toxic wastes (together with urban waste);
- operational from the late 1980's to the early 2000's under the control of Camorra;
- closed and seized by court injunctions in 2003-2009;
- □ first phase of trials had led to convictions up to 20 years of jail;
- □ severe episodes of soil and water contamination reported (Balestri, 2010);
- arson episodes in 2007, 2010, 2013, 2015 and 2016;
- □ increasing fugitive emissions caused by:
 - the impairment of the biogas management system,
 - the formation of large fractures in the waste sealing,
 - damages caused by arsons.

Landfill emissions have been estimated integrating different techniques to sample and analyse CH₄ and VOCs fluxes

Captation tube sampling for VOCs detection

Landfill VOC sampling

VOCs chemical analysis

Volatile Organic Compounds identified by GC-MS:

	Compounds	RT	lons	MW	Formula			Compounds		RT	lons	MW	Formula
Acids	formic aci		_			_			_			84.95	CH2Cl2
Acids	acetic acie	ore	than	160	com	pounds	were	identified	and	au	antified	78.11	C6H6
Acids	nonanoic				•••••					7.		92.14	C7H8
Acids	decanoic	tho	hing	ac of	thow	arious l	andfil	llc				106.17	C8H10
Alcohols	1 octanol	une	DIUS		the v	anousi	anum	113.				106 17	C8H10
Aldohudoc	mothacro											106 17	
Aldehydes	hovanal											100.17	
Aldehydes	hentanal NI				C I I I		•				1	104.15	Contro
Aldehydes		uni	que tra	acer o	T TOXIC	waste di	imping	g can be clear	iy ide	ntitie	ed	120.20	C9H12
Aldehydes	NONANA											120.20	C9H12
Aldehydes	DECANAL											120.20	C9H12
Aldehydes	benzaldel 🔽		. I:C I						المريم ال				
	10	sim	ριιτγ τι	ne ana	aiysis c	of the alfi	erence	es among the	land	riii e	missions,	120.20	C9H12
Alkanes	pentane	C										128.17	C10H8
A H	VU	CS V	vere g	roupe	a acco	raing to t	ne toli	owing chemic	cal cla	sses	5.	72.11	C4H8O
Alkanes	pentane,											120.15	C8H8O
Alkanes	bevano	are	nes.				•	alcohols.				70.09	C4H6O
Alkanes	hexane 2		,					,					
Alkanes	hexane 3		onoc				•	hotorocyclic				81.12	C5H7N
, indirect	nontano	aik	enes,				•	neterocyclic,				154.21	C12H10
Alkanes	trimethyl											94.11	C6H6O
Alkanes	heptane	alk	anes,				•	chlorinated,				154.25	C10H10O
Alkanes	3 methyl		,					,				68 12	C5H8
Alkanes	octane	car	honyle	-			•	athar compa	unde			126.24	C10U16
Alkanes	nonane	Cal	DUTIYIS)			•	other compo	unus.			130.24	
Alkanes	undecane											136.24	C10H16
Alkanes	dodecane	27 351	57-43-71	170.33	C12H16		Terpenes	beta pinene		20 711	93-69-41-91	136.24	C10H16
Alkanes	tetradecane	32 384		198.39	C14H30		Terpenes	para cimene		21 340	119-91-134	134.21	C10H14
Alkenes	1-octene	14 204	55-41-83-70	112.22	C8H16		Terpenes	limonene		22 300	68-93-67-79	136.24	C10H16

Giugliano landfill VOCs emissions

compared with Malagrotta landfill emissions

SW outskirts of Rome,

- the largest landfill in Europe until it was closed down in 2013,
- biogas sampled in the late 1990's from the main ducts at the inlet of the filtration unit of two aged pits,
- sampling and analytical meth. were the same as in Giugliano,
- located about 180 km NW of Giugliano.

Mean percent composition of the classes of VOCs detected in the biogas of the Giugliano Landfills (Naples) compared to Malagrotta landfill (Rome)

Geographic area		Roma							
Landfill name	Masseria Amplia- del mento Pozzo Masseria		Amplia- mento Schiavi	nplia- nento Novambiente chiavi		Resit Resit Resit 1b 2b X		Malagrotta	
Landfill surface	125,153	63,581	83,027	50,135	5,041	7,915	7,408	2,400,000	
(m ²)									
		Bio	gas VOC co	mposition (%)					
ARENES	66.49	67.42	66.78	37.21	78.13	34.21	45.67	37.92	
ALKENES	13.59	13.39	14.47	5.38	1.92	1.63	15.83	19.50	
ALKANES	13.52	9.30	14.13	56.34	19.78	63.96	37.67	21.73	
CARBONYLS	3.58	7.85	2.41	0.27	0.01	0.02	0.54	16.42	
ALCOHOLS	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1.24	
HETEROCYCLICS	0.92	1.47	0.51	0.52	b.d.l.	0.03	b.d.l.	0.49	
CHLORINATED	1.90	0.56	1.64	0.05	0.19	0.06	0.09	2.66	
OTHERS	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.03	

ARENES: 2-3 times higher in Giugliano than in Malagrotta

- benzene: Giugliano ~ Malagrotta;
- xylenes and p-cymene: Giugliano >> Malagrotta;
- Styrene: Giugliano << Malagrotta;

Higher p-cymene levels together with the lower content of limonene suggests a more advanced aging process of waste in Giugliano compared to Malagrotta.

CHLORINATED: 1,1-di-, tri-, tetrachlorethenes with the lower homolog as the dominant component, at variance with Malagrotta, where tri- and tetrachloroethenes, together with 1,2-dichloroethene were dominant.

Higher xylene levels together with the presence of 1,1dichloroethene, and MEK among CARBONYLS, can be attributed to the dumping of solvents of industrial origin.

ALKANES: 2-3 times higher in Giugliano than in Malagrotta, associated to a drop in the relative content of alkenes and

A high relative content of alkanes indicates an advanced stage of biochemical waste degradation.

ALKANES: 2-3 times higher in Giugliano than in Malagrotta, associated to a drop in the relative content of alkenes and carbonyl compounds.

A high relative content of alkanes indicates an advanced stage of biochemical waste degradation.

ARENES: even if the overall content is similar to that detected in Malagrotta, the BTEX fraction is larger for Resit and Novambiente landfills indicating the possible dumping of petroleum derived products.

CHLORINATED: only 1,2-dichlorobenzene is detected in fraction larger than in Malagrotta indicating the possible dumping of agrochemical and insecticide production waste

Air quality impact assessment of toxic compounds

	Cance	er risk	Toxic risk	WHO Guideline values					
	IUR [µg/m ³] ⁻¹	SL TR=1.0E-6 [μg/m³]	RfC [µg/m ³]	[µg/m³]					
benzene	7.80E-06	0.36	30	no safe level					
toluene			5000	260 *					
ethylbenzene	2.50E-06	1.12	1000						
p-xylene			100						
o-xylene			100						
styrene			1000	260 *					
1,1-dichloro ethylene			200						
tetrachloro ethylene	2.60E-07	10.80	40	250					
trichloro ethylene	4.10E-06	0.48	2	no safe level					
1,2-dichloro benzene			200						
Methyl Ethyl Ketone			5000						
*(weekly average)									
IUR: Inhalation Unit Risk									
SL TR=1.0E-6: Screening level Target Risk 10-6									
RfC: Reference Concentration									

Carcinogenic and chronic noncarcinogenic risk factors (ISS/INAIL, 2014; US/EPA,2017; WHO, 2000)

Simulation set-up: WRF + SPRAY

WRF V3.5.1

Grid spacing: 45, 9, 3, 1 km Vertical grid: 35 levs (up to 50 hPa) BCs: GFS Land Cover: CORINE 2006

SPRAY

Computational domain: 12x12 km² Grid spacing: 100m Wind adjustment: mass-consistent model SWIFT Sources: individual landfill contribution Emissions: hourly frequency Pollutants: non-reactive

year-long simulation (01/11/2015 - 31/10/2016)

Wind field adjustment: mass-consistent model SWIFT

SWIFT ($\Delta x=100m$)

WRF ($\Delta x=1 \text{ km}$)

Atmospheric turbulence similatity scaling parameters estimated by met. pre-processor SURFPRO

SPRAY model computational domain

Computational domain:

- extension: 12x12 km²
- grid spacing: 100m
- includes the nearest inhabited areas and provides high resolution needed nearby the landfill area

Hourly emissions

CH₄ hourly emission estimate for each individual landfill from:

- Continuous eddy correlation flux measurements
- Airborne measurements
- Surface sampling

Yearly average emission:Masseria: $0.312 \text{ g m}^{-2} \text{ h}^{-1}$ Resit: $0.390 \text{ g m}^{-2} \text{ h}^{-1}$

VOC/CH₄ ratio estimated for each compound from surface sampling and GC-MS analyses

Landfill	Surface m ²	CH4	benzene	toluene	ethyl benzene	p-xylene	o-xylene	styrene	1,1- dichloro ethylene	tetrachloro ethylene	trichloro ethylene	1,2- dichloro benzene	MEK
Masseria del Pozzo	125153	393.2	6.45	68.52	68.35	125.41	32.45	0.479	4.092	2.093	0.144	0.023	36.04
Ampliamento Masseria del Pozzo + Schiavi	146608	431.9	3.14	64.63	19.35	87.81	33.07	0.073	2.098	2.069	0.075	0.033	92.17
Novambiente	50135	157.5	1.66	3.41	14.09	3.53	0.74	0.020	0.024			0.024	
Resit categoria 1b	5041	27.6	0.41	21.19	26.85	36.86	6.87					0.022	
Resit categoria 2b	7915	43.3	3.37	13.25	11.48	7.42	0.98						
Resit X	7408	40.5	3.06	13.11	11.83	8.73	1.27					0.001	

Annual total emissions CH₄ (ton/year); VOCs (kg/year)

Benzene annual average concentration (ng m⁻³)

p-xilene annual average concentration (ng m⁻³)

p-xilene hourly maximum concentration (µg m⁻³)

Maximum computed concentrations vs ref. toxicity values

	Computed a concentration (tmospheric grid maximum)	Reference values						
	Annual average	Hourly maximum	Screening Level	Cancer(ca)/					
	ng/m ³	μg/m³	µg/m³	non-cancer(nc) risk					
benzene	26	0.3	0.36	са					
toluene	186	2.7	5210	nc					
ethylbenzene	198	3.0	1.12	са					
p-xylene	311	3.5	104	nc					
o-xylene	83	0.7	104	nc					
styrene	1.1	0.01	1040	nc					
1,1-dichloro ethene	9.7	0.09	209	nc					
tetrachloro ethene	5.2	0.05	10.8	са					
trichloro ethene	0.34	0.003	0.48	са					
1,2-dichloro benzene	0.11	0.002	209	nc					
Methyl Ethyl Ketone	360	1.9	5210	nc					
Screening levels: Cancer risk: Target Risk 10-6 Noncancer risk: Target Hazard Quotient (THQ) = 1									

Conclusions

- ✓ Toxic compounds are present in the emission of the Giugliano landfills, possibly due to the past damping of toxic wastes.
- ✓ The air quality impact assessment showed that present emission rates are not sufficient to induce acute or chronic diseases to the local population.
- ✓ Closed landfills must be kept under control to avoid increase in VOC emissions due to fracturing of the sealing system, risk of fires and explosions.
- VOCs can worsen local air quality contributing to ozone and particle formation when mixed with other VOC, NOx and particles emitted from sources active within the Naples-Caserta conurbation (ship traffic, biomass burning for domestic heating, illegal open burning of wastes and forest fires).

Thank you

BioQuAr project has been funded by Government Commissioner for Remediation and coordinated by the Institute for Mediterranean Agriculture and Forest Systems (ISAFOM) of the National Research Council.