

CAPABILITIES OF BULGARIAN CHEMICAL WEATHER FORECAST SYSTEM EVALUATED WITH THE FAIRMODE DELTA TOOL

Emilia Georgieva, Dimiter Syrakov, Maria Prodanova, Kiril Slavov

National Institute of Meteorology and Hydrology Bulgarian Academy of Sciences, Sofia

Scope

Why?

- positive previous experience with "DELTA-assessment" as fast diagnostic tool
- what can "DELTA-forecast" tell us about the performance of our modelling system

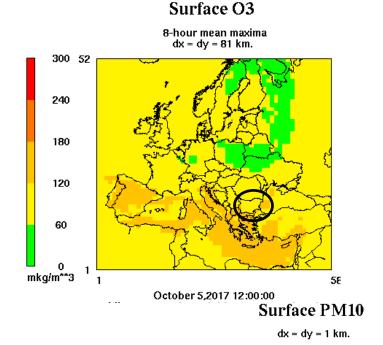
Purpose:

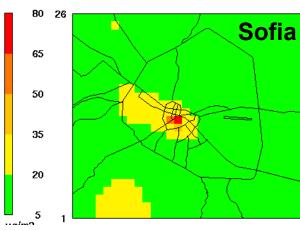
Preliminary check of 1 year of simulations (2015) daily mean PM_{10} , daily max of 8h running mean O_3

Compare to previous evaluations

Outline

- The modelling system
- The AQ data set
- "DELTA forecast" parameters
- Sensitivity check
- Results
- Concluding remarks

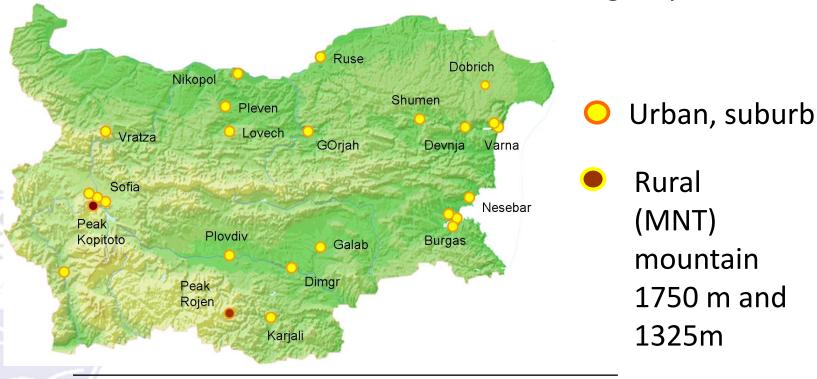

WRF - CMAQ @ NIMH - 1/2


- Operational runs for +72h forecast
- 5 domains EU-81km
 27km, 9km, 3km,
 SOF-1km
- SO₂, NO₂, O₃, PM₁₀
- Maps on

http://info.meteo.bg/cw2.1

http://info.meteo.bg/cw2.2

 Not used for regulatory purposes



WRF_CMAQ @ NIMH 2/2

- WRF v.3.6.1. NCEP/GFS, Analysis nudging in D1
- CMAQ v.4.6 CB-4, 14 vertical levels
- Emissions: TNO 2009 outside Bulgaria & National inventory for 2010, temporal allocation based on TNO profiles, GIS based system for spatial disaggregation
- Here use of model results with dx = 9km (Bulgaria domain)

The AQ dataset - 2015

33 background stations maintained by the National Executive Environment Agency

No.stations	O3	PM10	
Background with	19	22	_
data >75%			

DELTA v5.5 – Forecast mode

- based on pairs of surface data mod-obs.
- in process of fine tuning
- Main MQI

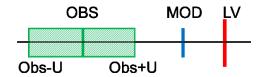
Target_{forecast} =
$$\frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (M_{i}^{*} - O_{i})^{2}}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_{i-j} - O_{i})^{2}}}$$

j - forecast time length (day)

M* - transformed model value to account for measurement uncertainty (U)

MQI = 1: model is as good as a persistent model

MQI < 1: better than the persistent model


MQI >1: poorer performance

DELTA forecast parameters & input

- False alarms FA, missed alarms MA
- False alarm ratio FAR=FA/(FA+GA+)
- Probability of detection DP = GA+/(MA+GA+)
- Composite exceedance indicator CEI = 0.5(DP+1-FAR)

	Observations		Model (M*)			
OBS MOD IV	relation to LV	Alarm?	relation to LV	Alarm ?	DELTA	
	O ₊ <lv< td=""><td>No</td><td>M*<lv< td=""><td>No</td><td>GA-</td></lv<></td></lv<>	No	M* <lv< td=""><td>No</td><td>GA-</td></lv<>	No	GA-	
	O, <lv< td=""><td>No</td><td>M*≥LV</td><td>Yes</td><td>FA</td></lv<>	No	M*≥LV	Yes	FA	
+	O- <fa< td=""><td>1: Yes, conserv. 2: No, cautious 3: Same as model</td><td>M*<lv< td=""><td>No</td><td>MA GA- GA-</td></lv<></td></fa<>	1: Yes, conserv. 2: No, cautious 3: Same as model	M* <lv< td=""><td>No</td><td>MA GA- GA-</td></lv<>	No	MA GA- GA-	
	O ₋ <lv O₊≥LV</lv 	1: Yes, conserv. 2: No, cautious 3: Same	M*≥LV	Yes	GA+ FA GA+	
+	O_≥LV	Yes	M* <lv< td=""><td>No</td><td>MA</td></lv<>	No	MA	
++	O_≥LV	Yes	M*≥LV	Yes	GA+	

input parameters:

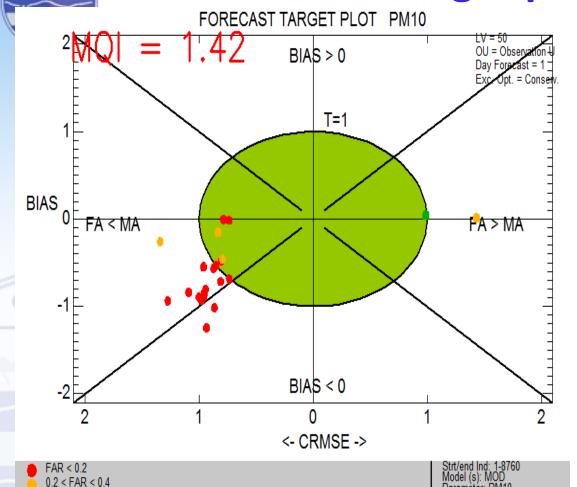
- 1. Limit value (LV) (PM10 -50, O3 -120)
- 2.Uncertainty (fixed%, or variable)
- 3. Flexibility option for uncertainty behavior (conservative, caution, same as model)
- 4. Forecast time (D+1, D+2..)

Sensitivity to input parameters

1.Uncertainty

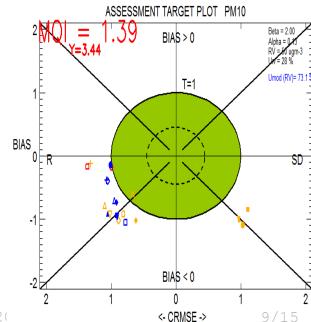
2. Flexibility

3. Time lag


	10%	50%	Variable	conserv	caution	as model	d+1	d+2
MQI	1.82	0.96	1.42	1.42	1.42	1.42	1.42	1.05
FAR %	27	2	9	9	26	9		
POD %	14	32	21	21	38	43		

- Improvement with higher U
- Flexibility changes FA, MA, not MQI; best with "as model"
- MQI improves with time lag

Selected options:


U – variable, flexibility –conservative, Day+1

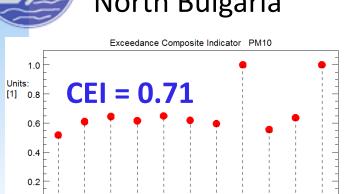
Forecast Target plot PM10

- MQI >1
- MA > FA
- BIAS < 0,

Mean OBS =35.5 μ gm⁻³, mean MOD=24.2 μ gm⁻³

0.4 < FAR < 0.6

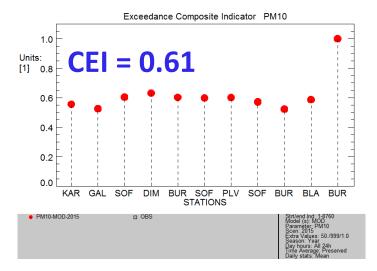
0.6 < FAR < 0.8 0.8 < FAR < 1.0 Extra Values: 50./999/1.0/1.0

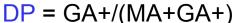

Day hours: All 24h Time Average: Preserved

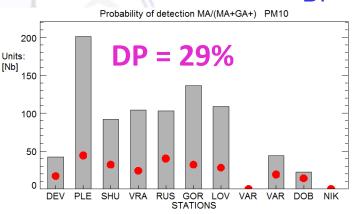
PM10-MOD-2015

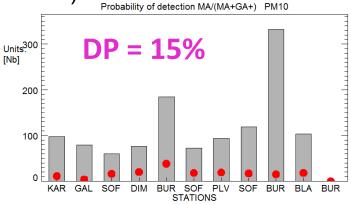
Regional plots – PM10

North Bulgaria

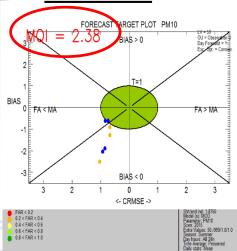


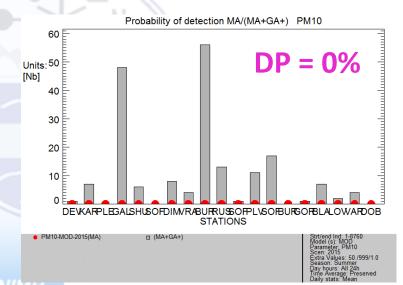

PLE SHU VRA RUS GOR LOV VAR VAR DOB NIK


Extra Values: 50./999/1.0

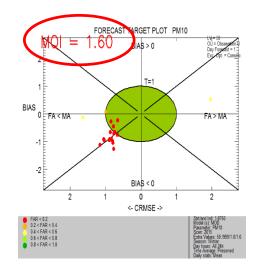

STATIONS

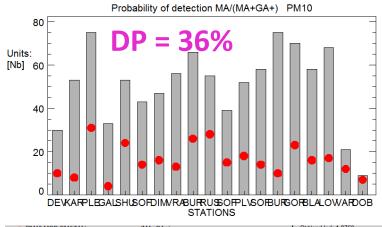
South Bulgaria

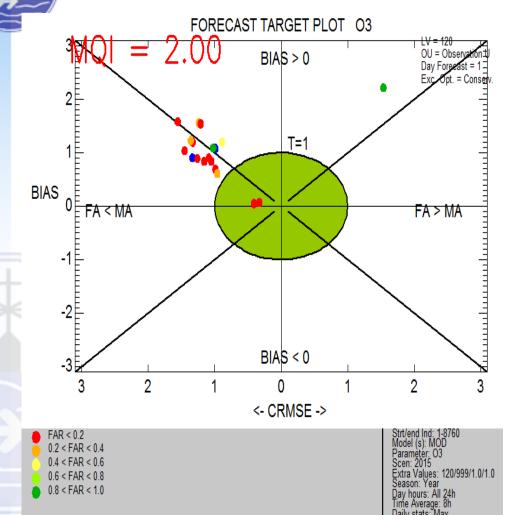




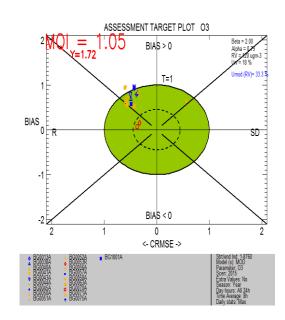
The first (Figure 3) for the probability of detection plots GA+ as red dots and (MA+GA+) as grey column for each station. A good model capability would see all red dots on top of the column.


Seasonal plots – PM10

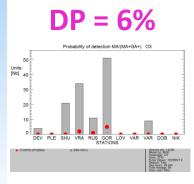




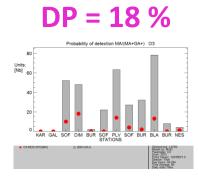
winter



Forecast Target plot O3 8hDMAX

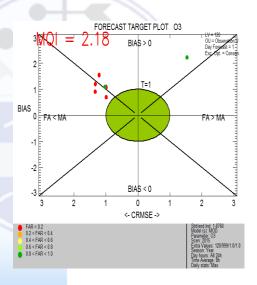

- MQI >1
- MA > FA
- Overestimation

mean OBS =69.2 μ gm⁻³, mean MOD =95.3 μ gm⁻³

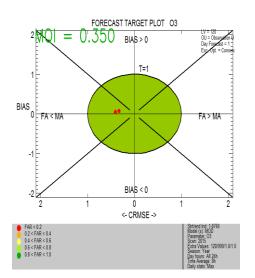


Regional plots – Dmax 8h O3

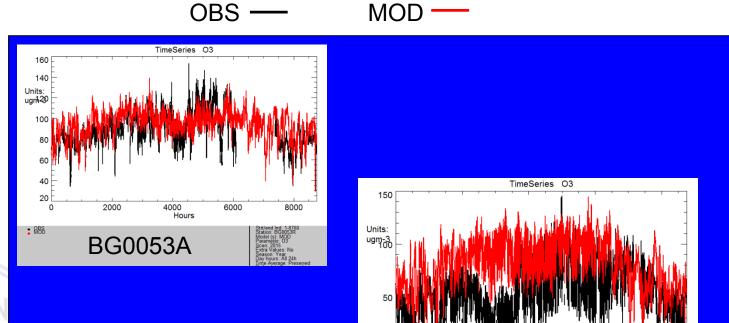

North BG


South BG




MOUNT

DP = GA+/(MA+GA+) Red dots: GA+, grey bars :MA+GA+



O3 hourly – time series

The model overestimates night-time values

• OBS MOD 4000

BG0056A

6000

8000

Conclusions

- MQI (forecast): The modelling system performs worse than the persistent model
- The probability of detection of C>LV is ~20%
- PM10 OBS near LV, tolerance on the threshold?
- Spatial performance North BG for PM10 and South BG MNT for O3
- Seasonal performance PM10 in winter
 O3 in summer
- DELTA tool Useful, but sensitive to measurement uncertainty & flexibility input – not easy to interpret, technical errors
- Meteorological variables add to DELTA forecast

