Analysis of Variations of Concentrations with Downwind Distance and Characteristics of Dense Gas Plume Rise for Jack Rabbit II–2015 and 2016 Chlorine Field Experiments

Steven Hanna¹, Joseph Chang², Thomas Mazzola³

¹Hanna Consultants, Kennebunkport, ME; ²RAND, Arlington, VA; ³Engility, Lorton, VA

HARMO 18, Bologna, Italy, 9-12 October 2017

JR II Cloud, Trial 5, looking toward south (upwind) 0.5 sec after release starts

Movies & TV

Side to side dimension of obstacle array = 100 m

Jack Rabbit II

- Follows JR I (10 trials in 2010), releasing 1 or 2 tons of pressurized liquefied chlorine or anhydrous ammonia. Mostly light winds, downward release into artificial 2 m deep by 25 m radius depression. C observations to 500 m.
- JR II 2015 5 trials, releasing 5 to 9 tons. Moderate winds, downward release in middle of mock urban array. Downwind C observations to 11 km, and inside some buildings.
- JR II 2016 4 trials, releasing 10 to 20 tons over flat desert surface (same set-up as 2015 but with mock urban array removed). Trials 6 and 9 downwards, trial 7 45° downwards, trial 8 up.

10 ton Tank used for JR II Chlorine Releases Designed by Tom Spicer (in photo)

Summary of JR II – 2015 and 2016

Trial	day	time	release	total jet	Q (leg/s)	wind speed	wind	AvgT
		MDT	duration	mass lig		atz=2m	direction	C
			s			m/s		
1	8/24/2015	7:35:46 AM	22.2	4545	204.7	3.1	147	17.7
2	8/28/2015	9:24:21 AM	32.4	8192	252.8	2.5	158	22.7
3	8/29/2015	7:56:55 AM	20.3	4568	225.0	4.1	170	22.6
4	9/1/2015	8:39:33 AM	28.8	7017	243.6	3.6	184	22.6
5	9/3/2015	7:29:09 AM	33.6	8346	248.4	5.0	183	22.2
6	8/31/2016	8:23:35 AM	33.2	8392	252.8	2.3	160	22.0
7	9/2/2016	7:56:00 AM	36.4	8620	236.8	4.5	160	18.9
8	9/11/2016	9:01:45 AM	30.0	2368	78.9	2.2	175	14.8
9	9/17/2016	8:05:00 AM	133	17700	133.5	3.5	165	10.5

JR II C Samplers on 2, 5, and 11 km arcs

JR II Trial 2, 4.3 sec after the release starts

Movies & TV

- 0 ×

Part 1 of paper – Plots of C and Cu/Q versus distance x

- C is arc max 1-3 s average concentration; u is 2 m wind speed, Q is mass emission rate
- For emergency response guidance, a plot of C vs x combined for all release trials shows what to expect from release of 1 to 20 tons of chlorine
- Dimensional analysis should allow scatter to be reduced. Thus Cu/Q vs x.
- Fit line to observed Cu/Q vs x plot. It is found that Cu/Q is proportional to $x^{-5/3}$

Arc max C (in ppm) versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 – 9)

The straight line represents the -5/3 power law that best fits the max C point at the various x

Arc max Cu/Q versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 – 9)

The straight line represents the relation Cu/Q = 8.5x^{-5/3}, where Cu/Q has units m⁻² and x has units m

Comments on Plot of Cu/Q vs x

- Normalization with Q/u brought the Lyme Bay, JR I and JR II 2016 points closer together (reduced the scatter seen in the C vs x plot)
- However, the JR II 2015 points (where there was a mock urban obstacle array at x < 100 m) were not moved much closer to the others and now are the "low values" on the plots
- The mock urban obstacles were seen to visibly enhance mixing and thus there may be an "initial mixing" effect that reduces concentrations over the whole sampling array

Part 2 of paper - Vertical dense jet in Trial 8 (hole at top of tank)

- The dense jet rises up about 40 m (plume centroid height), then touches down to the ground at a distance of about 60 m
- Compare maximum rise and touchdown distance with Hoot et al (1973) analytical formulas

Trial 8 dense plume about 30 s after release. Distance from the source to the red obstacle is about 85 m

Hoot, Meroney, and Peterka (1973)

Analyzed dense plume observations from many experiments in their wind tunnel. Came up with simple analytical formulas based on fundamental science

Plume rise Δh above source:

 $\Delta h/2R_o = 1.32 \ (w_o/u)^{1/3} (\rho_o/\rho_a) (w_o^2/(2R_og'))^{1/3}$

where $g' = g(\rho_o - \rho_a)/\rho_o$; g is acceleration of gravity, ρ_a is ambient air density, u is wind speed, and ρ_o , R_o , and w_o are initial plume density, radius and vertical velocity after depressurization.

Hoot, Meroney, and Peterka (1973) slide 2

Plume touchdown distance x_g downwind: $x_g/2R_o = w_o u/(2R_og') + 0.56\{(\Delta h/2R_o)^3 * ((2 + h_s/\Delta h)^3 - 1)u^3/(2R_ow_og_a')\}^{1/2}$ where $g_a' = g(\rho_o - \rho_a)/\rho_a$ and h_s is elevation of the stack or vent opening above the ground.

Inputs to Hoot et al. formula

- Q = 79 kg/s
- T = -34 C (chlorine boiling point)
- 20 % of mass released flashes (to gas). The rest is small aerosol drops. Assume effective initial density ρ_o is 12.5 kg/m³.
- Sensitivity study with initial vertical velocity w_o of 206 m/s (sonic) and 50 m/s. These imply initial radius R_o of 0.1 and 0.2 m.

Results of Hoot et al. formula

- For initial vertical velocity w_o of 206 m/s (sonic) and initial radius R_o of 0.1 m, plume rise Δh is 92 m and touchdown distance x_g is 100 m
- For initial vertical velocity w_o of 50 m/s (sonic) and initial radius R_o of 0.2 m, plume rise Δh is 36 m and touchdown distance x_g is 39 m
- These two predictions roughly bracket the observed values

Conclusions

- The two types of initial analysis described above demonstrate that the JR II data follow expected scientific relations regarding variations of concentrations with downwind distance, and rise of dense plumes.
- As with all analysis of environmental data, there is much scatter.