Analysis of Variations of Concentrations with Downwind Distance and Characteristics of Dense Gas Plume Rise for Jack Rabbit II-2015 and 2016 Chlorine Field Experiments

Steven Hanna ${ }^{1}$, Joseph Chang ${ }^{2}$, Thomas Mazzola ${ }^{3}$ ${ }^{1}$ Hanna Consultants, Kennebunkport, ME; ${ }^{2}$ RAND, Arlington, VA; ${ }^{3}$ Engility, Lorton, VA

HARMO 18, Bologna, Italy, 9-12 October 2017

JR II Cloud, Trial 5, looking toward south (upwind) 0.5 sec after release starts

Side to side dimension of obstacle array $=100 \mathrm{~m}$

Jack Rabbit II

- Follows JR I (10 trials in 2010), releasing 1 or 2 tons of pressurized liquefied chlorine or anhydrous ammonia. Mostly light winds, downward release into artificial 2 m deep by 25 m radius depression. C observations to 500 m .
- JR II 2015 - 5 trials, releasing 5 to 9 tons. Moderate winds, downward release in middle of mock urban array. Downwind C observations to 11 km , and inside some buildings.
- JR II 2016-4 trials, releasing 10 to 20 tons over flat desert surface (same set-up as 2015 but with mock urban array removed). Trials 6 and 9 downwards, trial 745° downwards, trial 8 up.

10 ton Tank used for JR II Chlorine Releases Designed by Tom Spicer (in photo)

Summary of JR II - 2015 and 2016

Trial	day	time	release	total jet	Q(les/s)	wind speed	wind	Avg ${ }^{\text {T }}$
		MDT	duration	mass les		at $\mathbf{z}=2 \mathrm{~m}$	direction	C
			5			m / s		
1	8/24/2015	7:35:46AM	22.2	4545	204.7	3.1	147	17.7
2	8/28/2015	9.24:21 AM	32.4	8192	252.8	2.5	158	22.7
3	8/29/2015	7:56:55 AM	20.3	4568	225.0	4.1	170	22.6
4	9/1/2015	8:39:33 AM	28.8	7017	243.6	3.6	184	22.6
5	9/3/2015	7:29:09 AM	33.6	8346	248.4	5.0	183	22.2
6	8/31/2016	8:23:35 AM	33.2	8392	252.8	2.3	160	22.0
7	9/2/2016	7:56.00 AM	36.4	8620	2368	4.5	160	18.9
8	9/11/2016	9:01:45 AM	30.0	2368	78.9	2.2	175	14.8
9	9/17/2016	8:05:00 AM	133	17700	133.5	3.5	165	10.5

JR II C Samplers on 2, 5, and 11 km arcs

Azimuth of grid centerline: 345 deg

JR II Trial 2, 4.3 sec after the release starts

Part 1 of paper - Plots of C and Cu / Q versus distance x

- C is arc max $1-3 \mathrm{~s}$ average concentration; u is 2 m wind speed, Q is mass emission rate
- For emergency response guidance, a plot of C vs x combined for all release trials shows what to expect from release of 1 to 20 tons of chlorine
- Dimensional analysis should allow scatter to be reduced. Thus Cu / Q vs x .
- Fit line to observed Cu/Q vs x plot. It is found that Cu / Q is proportional to $\mathrm{x}^{-5 / 3}$

Arc max C (in ppm) versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 - 9)

The straight line represents the
-5/3 power law that best fits the max C point at the various x

Arc max Cu / Q versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 - 9)

The straight line represents the relation $\mathrm{Cu} / \mathrm{Q}=$ $8.5 x^{-5 / 3}$, where Cu / Q has units m^{-2} and x has units m

Comments on Plot of Cu / Q vs x

- Normalization with Q/u brought the Lyme Bay, JR I and JR II 2016 points closer together (reduced the scatter seen in the C vs x plot)
- However, the JR II 2015 points (where there was a mock urban obstacle array at $\mathrm{x}<100 \mathrm{~m}$) were not moved much closer to the others and now are the "low values" on the plots
- The mock urban obstacles were seen to visibly enhance mixing and thus there may be an "initial mixing" effect that reduces concentrations over the whole sampling array

Part 2 of paper - Vertical dense jet in Trial 8 (hole at top of tank)

- The dense jet rises up about 40 m (plume centroid height), then touches down to the ground at a distance of about 60 m
- Compare maximum rise and touchdown distance with Hoot et al (1973) analytical formulas

Trial 8 dense plume about 30 s after release. Distance from the source to the red obstacle is about 85 m

Hoot, Meroney, and Peterka (1973)

Analyzed dense plume observations from many experiments in their wind tunnel. Came up with simple analytical formulas based on fundamental science

Plume rise $\boldsymbol{\Delta} \boldsymbol{h}$ above source:
$\Delta h / 2 R_{o}=1.32\left(w_{o} / u\right)^{1 / 3}\left(\rho_{o} / \rho_{a}\right)\left(w_{o}{ }^{2} /\left(2 R_{o} g^{\prime}\right)\right)^{1 / 3}$
where $g^{\prime}=g\left(\rho_{o}-\rho_{a}\right) / \rho_{o} ; g$ is acceleration of gravity, $\boldsymbol{\rho}_{a}$ is ambient air density, \boldsymbol{u} is wind speed, and $\rho_{o}, \boldsymbol{R}_{o}$, and \boldsymbol{w}_{o} are initial plume density, radiu's and vertical velocity after depressurization.

Hoot, Meroney, and Peterka (1973) slide 2

Plume touchdown distance x_{g} downwind:

$$
\begin{aligned}
x_{g} / 2 R_{o}= & w_{o} u /\left(2 R_{o} g^{\prime}\right)+0.56\left\{\left(\Delta h / 2 R_{o}\right)^{*}\right. \\
& \left.\left(\left(2+h_{s} / \Delta h\right)^{3}-1\right) u^{3} /\left(2 R_{o} w_{o} g_{a}{ }^{\prime}\right)\right\}^{1 / 2}
\end{aligned}
$$

where $\boldsymbol{g}_{a}{ }^{\prime}=\boldsymbol{g}\left(\boldsymbol{\rho}_{o}-\boldsymbol{\rho}_{a}\right) / \boldsymbol{\rho}_{a}$ and \boldsymbol{h}_{s} is elevation of the stack or vent opening above the ground.

Inputs to Hoot et al. formula

- $\mathrm{Q}=79 \mathrm{~kg} / \mathrm{s}$
- $\mathrm{T}=-34 \mathrm{C}$ (chlorine boiling point)
- 20 \% of mass released flashes (to gas). The rest is small aerosol drops. Assume effective initial density ρ_{0} is $12.5 \mathrm{~kg} / \mathrm{m}^{3}$.
- Sensitivity study with initial vertical velocity w_{o} of $206 \mathrm{~m} / \mathrm{s}$ (sonic) and $50 \mathrm{~m} / \mathrm{s}$. These imply initial radius R_{o} of 0.1 and 0.2 m .

Results of Hoot et al. formula

- For initial vertical velocity w_{o} of $206 \mathrm{~m} / \mathrm{s}$ (sonic) and initial radius R_{o} of 0.1 m , plume rise $\Delta \mathrm{h}$ is 92 m and touchdown distance x_{g} is 100 m
- For initial vertical velocity w_{0} of $50 \mathrm{~m} / \mathrm{s}$ (sonic) and initial radius R_{o} of 0.2 m , plume rise $\Delta \mathrm{h}$ is 36 m and touchdown distance x_{g} is 39 m
- These two predictions roughly bracket the observed values

Conclusions

- The two types of initial analysis described above demonstrate that the JR II data follow expected scientific relations regarding variations of concentrations with downwind distance, and rise of dense plumes.
- As with all analysis of environmental data, there is much scatter.

