

Web-based Air Quality Screening Tool for Near-port Assessments: Example of Application in Porto, Portugal

Vlad Isakov, Timothy Barzyk

U.S. EPA, ORD, National Exposure Research Laboratory, Research Triangle Park, North Carolina, USA

Saravanan Arunachalam, Brian Naess, Catherine Seppanen UNC Chapel Hill, Institute for the Environment, Chapel Hill, North Carolina, USA

Alexandra Monteiro, Sandra Sorte CESAM, Department of Environment, University of Aveiro, Portugal

18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 October 2017, Bologna, Italy

C-PORT Air Quality Screening Tool

- C-PORT web-based tool has been developed for estimating pollutant concentrations related to port-related activities at fine spatial scales in the near-source environment^{*}
- C-PORT is designed to conduct these assessments in rapid time, and to evaluate the impact of various emissions scenarios on-demand
- C-PORT has been developed and applied to areas within the U.S. to date
- We are expanding the C-PORT capabilities so that it can be applied in other port areas outside the U.S., to study nearsource pollution in an easy manner, and explore the benefits of improvements to air quality and exposures

* Env. Modeling & Software, 2017 (<u>https://authors.elsevier.com/sd/article/S1364815216311367</u>)

C-PORT: Web-based Air Quality Screening Tool

Community Modeling and Analys Search for Searc Help - Download -	is System h Software - Confere	ence - Training - Resources -	User Details - Log Out
HOME / CTOOLS C-TOOLS In collaboration with the EPA, we predict concentrations of multiple technical expertise to use. The a derived from specification of rep application and intended purpos model calculations. However, ma detailed analysis, and often do n visualization technology to provi	AMET BENMAP CMAQ CoST C-TOOLS FEST-C I/O API R-LINE SMOKE Spatial Allocator Speciation Tool VERDI Research & Development	ity-scale suite of local-scale air quality mod at fine spatial scales in the near-source en OOLS are based on scientifically robust for ut data. Though functionally, C-TOOLS and he specificity of a regulatory application, th s require a quick initial assessment of air q odel application. C-TOOLS attempts to brid mmunity users to undertake such initial air natives, such as changes in traffic volume, s	C-PORT: web-based screening tool Model inputs: • pre-loaded emissions • pre-loaded meteorology Dispersion algorithms for area, point, line sources related to freight-movement activities, and emissions from port termina
			Model outputs: geospatial maps Analysis capabilities through easy-to-use GUI to assess air quality impacts of

'what if' scenarios

Example of application in Porto, Portugal

 C-PORT application in Port of Leixões as an illustration for extending to other ports of the world

United States

Agency

Environmental Protection

 Discuss data needs for easy adaptation and implementation for new ports

O.TA

The AIRSHIP project http://airship.web.ua.pt/

AIRSHIP project: 2016-2019

Task 1. Maritime transport emissions inventory and projections
Task 2. Impact of the maritime transport emissions on AQ over Portugal
Task 3. Case study: Port of Leixões
Task 4. Guidelines about contribution of maritime transport to AQ strategy

First step: selecting modeling domain

United States Environmental Protection Agency

♣FPA

Uploading emissions: port terminals

DO CARRO

GATÕES LOMBA

	()
	Ĵ
	Ĵ
ľ	щ
	A
	2
	$oldsymbol{eta}$
1	

n an	1		No.C	16		N.A.	and the party		-	300		Đ	N 🗆	anta Cr
View and modify	y area	a sour	ces										0	NT P
All emissions values given	in tons/ye	ear.												
Select all sources	Add net	w source	• 0	Load ne	ew source	es 🗸 🔞							d- I	MIRÃO P-T
Facility	NOx	со	SO2	PM _{2.5}	EC _{2.5}	OC _{2.5}	PM ₁₀	Benz	Form	Acetald	Acro		1 ×	DODIELA
Yacht Marina	C) 0	0	0	0	0	0	0	0	0	0	1	•	PORTELA
Multipurpose Terminal	24.2958	3 2.7273	0.0125	1.4888	1.1479	0.2620	1.4888	0.0216	3.1250e-5	0	2.5000e-3	1	· ESSADA	De M
Yacht Marina	C) 0	0	0	0	0	0	0	0	0	0	1	•	
North Container Terminal	48.5916	5.4547	0.0250	2.9776	2.2957	0.5241	2.9776	0.0433	6.2500e-5	0	5.0000e-3	1	•	Contraction of the second
South Container Terminal	48.5916	5.4547	0.0250	2.9776	2.2957	0.5241	2.9776	0.0433	6.2500e-5	0	5.0000e-3	/	•	MONT
First Previous 1	2 3	4 8	5 Nex	t Last									5	

Matosi

ARDOAL

BAIRRO DO PAU Guifões

LINHARES DE CIMA

SENDIM

A28 BARRANHA

Example of input file

has		A AND A A A A A A A A A A A A A A A A A	CHE 2.S							
	facility name	geometry	NOx	со	SO2	PM 2.5	EC 2.5	OC 2.5	benzene	PM 10
	Yacht Marina	MULTIPOLYGON	0.00	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000
	North Container Terminal	MULTIPOLYGON	48.59	5.455	0.0250	2.978	2.296	0.524	0.0433	2.978
	South Container Terminal	MULTIPOLYGON	48.59	5.455	0.0250	2.978	2.296	0.524	0.0433	2.978
	Multipurpose Terminal	MULTIPOLYGON	24.30	2.727	0.0125	1.489	1.148	0.262	0.0216	1.489
	Fishing Harbour	MULTIPOLYGON	0.10	0.011	0.0001	0.006	0.005	0.001	0.0001	0.006
	Solid bulk agri-food terminals	MULTIPOLYGON	3.95	0.444	0.0020	0.242	0.187	0.043	0.0035	0.242
	Grain Storage	MULTIPOLYGON	3.95	0.444	0.0020	0.242	0.187	0.043	0.0035	0.242
	Roll-on/Roll-off Terminal	MULTIPOLYGON	2.85	0.320	0.0015	0.175	0.135	0.031	0.0025	0.175
	Passenger Terminal	MULTIPOLYGON	0.10	0.011	0.0001	0.006	0.005	0.001	0.0001	0.006
	Multipurpose Terminal	MULTIPOLYGON	24.30	2.727	0.0125	1.489	1.148	0.262	0.0216	1.489
	Cruise Terminal	MULTIPOLYGON	0.10	0.011	0.0001	0.006	0.005	0.001	0.0001	0.006
	Cements Terminal	MULTIPOLYGON	3.95	0.444	0.0020	0.242	0.187	0.043	0.0035	0.242
	Solid Bulk - Dock 1 South	MULTIPOLYGON	3.95	0.444	0.0020	0.242	0.187	0.043	0.0035	0.242
	Oil Terminal	MULTIPOLYGON	3.95	0.444	0.0020	0.242	0.187	0.043	0.0035	0.242

6 Office of Research and Development National Exposure Research Laboratory

Adding roadways, railways, point sources

United States Environmental Protection Agency

Meteorology used in C-PORT

- Hourly observations from Porto Airport (085450, LPPR, 41.248/-8.681)
 Onsite observations for 2014-2016
- 8 Office of Research and Development National Exposure Research Laboratory

Meteorology: airport vs. onsite obs.

Porto airport 2016 Porto onsite 2016 NORTH NORTH WEST EAST WEST EAST WIND SPEED (m/s) >= 5.00 4.00 - 5.00 SOUTH SOUTH 3.00 - 4.00 2.00 - 3.00 1.00 - 2.00 0.00 - 1.00

Office of Research and Development National Exposure Research Laboratory

Onsite observations 2014 - 2016

National Exposure Research Laboratory

PM₁₀ measurements

<u>Note</u>: wind direction analysis is based on hourly onsite observations, using 25-75 range (IQR) to determine prevailing wind direction for each day

Office of Research and Development National Exposure Research Laboratory

PM₁₀ measurements

<u>Note</u>: wind direction analysis is based on hourly onsite observations, using 25-75 range (IQR) to determine prevailing wind direction for each day

Office of Research and Development National Exposure Research Laboratory

Onsite observations in C-PORT

Summary statistics

Time series

Examples of C-PORT results

C-PORT Results: All Sources

"Inspect" mode in C-PORT

Analyzing impact of wind direction

Office of Research and Development National Exposure Research Laboratory

Analyzing impact of stability

Office of Research and Development National Exposure Research Laboratory

Analyzing impact of various source sectors

Port terminals

Docked ships and other stationary sources

Environmental Protection Agency

Ships-in-transit

Summary

- C-PORT application in Port of Leixões an illustration for extending to other ports of the world
- C-PORT allows the user to estimate relative contributions of various source sectors: terminals, ships, roadway traffic and other portrelated sources potentially affecting the local community
- C-PORT allows to change the meteorological conditions in order to estimate the range of changes in pollutant concentrations related to different conditions, and the extent the local sources would impact different neighborhoods around the port
- Furthermore, the user can change activity related to each source type using the web-based GUI, and assess the impacts of these changes in activity / emissions on ambient pollutant concentrations that can be further be used to develop mitigation options in support of the AIRSHIP study

Disclaimer

This paper has been subjected to Agency review and approved for publication. Approval does not signify that the contents reflect the views of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency