

18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 October 2017, Bologna, Italy

Characterizing Pollutant Plume Dispersion in Urban Atmospheric Surface Layer

Ziwei Mo & Chun-Ho Liu*

Department of Mechanical Engineering

The University of Hong Kong

15:30 to 15:50; October 10, 2017 (Tuesday)

H18-137, TOPIC 5. Urban scale and street canyon modelling: Meteorology and air quality.

**Corresponding Author:* Chun-Ho LIU; Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong; *Tel:* +852 3917 7901; *Fax:* +852 2858 5415; liuchunho@graduate.hku.hk

Outline

- Background & objectives
- Theoretical analysis
- Methodology
- Results & discussion

Urban Air Pollution

Piringer et al. (2012)

Background

• Gaussian plume dispersion model

$$c(x,z) = \frac{Q}{\sqrt{2\pi}U\sigma_z} \left\{ \exp\left[-\frac{(z-z_c)^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z+z_c)^2}{2\sigma_z^2}\right] \right\}$$

where c is the mean pollutant concentration, U the mean wind speed in the streamwise direction, z the distances from the ground-level in vertical direction, z_c the emission height, Q the pollutant emission rate and σ_z the vertical dispersion coefficient.

Skin-friction coefficient

$$C_f = \frac{\tau_w}{\rho U_{\infty}^2/2} = 2 \frac{u_*^2}{U_{\infty}^2}$$

where τ_w is the shear stress induced by the bottom rough surface, ρ the fluid density, U_{∞} the free-stream velocity, u_* the friction velocity estimated using Reynolds stress (Cheng and Castro, 2002; Ploss et al., 2000).

Objective

• To parameterize the vertical dispersion coefficient σ_z in the Gaussian model using skin-friction coefficient C_f

Theory

 Dispersion coefficient, which is a function of atmospheric turbulence, surface roughness & distance from the pollutant source x, can be described by the K-theory

 $\sigma_z^2 = 2Kt = 2K\frac{x}{U}$ where *K* is the diffusivity & *t* the pollutant traveling time

• K can be approximated by the friction velocity u_* and mixing length δ , as follows

 $K = u_*\delta$

• Dispersion coefficient can thus be expressed in terms of $u_* \& U_m$

$$\sigma_z^2 = 2x\delta \frac{u_*}{U} = 2 \times x \times \delta \times C_f^{1/2}$$

$$\sigma_z \propto x^{1/2} imes \delta^{1/2} imes C_f^{-1/4}$$

$$\sigma_{_z}$$
 / δ \propto $x^{1/2}$ / $\delta^{1/2}$ $imes$ $C_{_f}$ $^{1/4}$

Dimensionless format

Methodology

(b) H₂O atomizer (c) Rib configuration (d) Sensor location (e) Source location

Methodology

Measurement cases		Case L1	Case L2	Case L3	Case L4	Case H1	Case H2	Case H3	Case H4
Free-stream	U_{∞}	3.28	3.31	3.28	3.29	6.66	6.61	6.70	6.60
Rib [mm]	Size <i>h</i>	19	19	19	19	19	19	19	19
	Separation b	38	76	152	228	38	76	152	228
Aspect ratio	AR (= h/b)	1/2	1/4	1/8	1/12	1/2	1/4	1/8	1/12
-									

Note: L denotes lower wind speed measurements, H denotes higher wind speed measurements.

Measurement Parameters

Measurement cases		Low Wind	Speed ($U_{\infty} \approx $		High Wind Speed ($U_{\infty} \approx 6.6 \text{ m sec}^{-1}$)			
	Case L1	Case L2	Case L3	Case L4	Case H1	Case H2	Case H3	Case H4
Aspect ratio $AR (= h/b)$	1/2	1/4	1/8	1/12	1/2	1/4	1/8	1/12
Boundary layer thickness δ [mm]	240	260	285	265	245	265	285	260
Wind speed U_{∞} [m sec ⁻¹]	3.28	3.31	3.28	3.29	6.66	6.61	6.70	6.60
Friction velocity u_* [m sec ⁻¹]	0.184	0.215	0.222	0.224	0.382	0.449	0.474	0.468
$C_f(=2u_*^2/U_{\infty}^2)$ [×10 ⁻³]	7.958	10.351	12.223	11.883	8.352	11.413	12.973	12.835
$Re_{\infty} (= U_{\infty} \delta / v)$	78,720	86,060	93,385	83,810	163,252	175,165	190,950	168,300
$Re_* (= u_*\delta/v)$	4,422	5,597	6,328	5,721	9,356	11,904	13,503	11,938

Velocity & Turbulence Profiles

Gaussian distribution

Vertical profiles of dimensionless pollutant concentrations measured over the street canyons with aspect ratios (a) 1/2, (b) 1/4, (c) 1/8, (d) 1/12 at x = 10h (\Box); 15h (\triangle); 22.5h(\bigtriangledown); 30h (\triangleright); 37.5h (\triangleleft); 45h (\diamond); 52.5h (+); 60h (-); 67.5h (\bigcirc) at free-stream speed $U_{\infty} = 3.3$ m/s and x = 10h (\blacksquare); 15h (\blacktriangle); 22.5h(\checkmark); 30h (\triangleright); 37.5h (\triangleleft); 45h (\blacklozenge); 52.5h (*); 60h (#); 67.5h (\bigcirc) at free-stream speed $U_{\infty} = 6.6$ m/s. Also shown is the **theoretical Gaussian-form pollutant distributions** (*dark solid line*). Measurement results at x = 9h (\Box); 15h (\Box); 22.5h (\Box); 30h (\Box); at free-stream speed $U_{\infty} = 6.8$ m/s from Salizzonic et al. (2009).

Vertical profiles of dimensionless concentrations measured at different streamwise locations over street canyons with aspect ratios 1/2 (\Box) 1/4 (\triangle), 1/8 (\diamondsuit), and 1/12 (\bigcirc) at free-stream speed of (a) 3.3 m/s and 1/2 (\blacksquare) 1/4 (\blacktriangle), $\frac{1}{2}$ 8 (\diamondsuit), and 1/12 (\bigcirc) at free-stream speed of (b) 6.6 m/s.

Vertical dispersion coefficient

Vertical dispersion coefficients in the streamwise locations over street canyons with aspect ratios 1/2 (\Box) 1/4 (\triangle), 1/8 (\diamond), and 1/12 (\bigcirc) at free-stream speed of (a) 3.3 m/s and 1/2 (\blacksquare) 1/4 (\blacktriangle), 1/8 (\diamond), and 1/12 (\bigcirc) at free-stream speed of (b) 6.6 m/s.

Plume Dispersion over Hypothetical Urban Areas: Computational Model & Laboratory Measurements

Major Findings 0.5 Wind Tunnel Measurements U_{∞} [m sec⁻¹] 0.4 6.6 Consistent agreement 0.3 between Lab & $\sigma_{_{z}}/\delta$ CFD result: 0.2 RANS LES п 0.1 1/2 П 1/4 AR -1/3 1/13 () 1/5 🛛 1/10 🗆 0.5 1.5 $(x/\delta)^{1/2} \times f^{1/4}$

Objective

Parameterize the dispersion coefficient σ_z in the Gaussian models using friction coefficient $C_{f.}$

Complementary Solution Approacl

Impact

Conventionally σ_z is determined based on atmospheric stability that overlooks urban morphology. The results helps excel the functionality of the well-received Gaussian model for urban dispersion.

Oct 2017

Summary

The pollutant concentrations exhibit the conventional Gaussian distributions, suggesting the feasibility of using water vapor as a passive scalar in wind tunnel experiments.

□ A strong positive correlation between $\sigma_z \& x^{1/2} \delta^{1/2} C_f^{1/4}$ ($r^2 = 0.933$) is revealed from wind tunnel experiments. The analytical & empirical solutions formulate the basic parameterization of plume dispersion over urban areas.

Acknowledgments

• This study is supported by the General Research Fund (GRF) 17205314 of the Hong Kong Research Grants Council (RGC).

Thank you very much for your attention Please feel free to ask questions