Performances of parametric laws for computing the wind speed profile in the urban boundary layer. Comparison to two-dimensional building water channel experiment.

Annalisa Di Bernardino¹, Armando Pelliccioni², Paolo Monti¹, Giovanni Leuzzi¹ and Fabio Sammartino¹ ¹ Dipartimento di Ingegneria Civile Edile e Ambientale, Università di Roma "La Sapienza". Via Eudossiana 18 - 00184, Roma, Italy.

² INAIL-DIMELA, Monteporzio Catone, Rome, Italy.

Introduction

The expression generally used to determine the wind speed profile above the canopy is based on the log-law in (1):

 $\frac{\bar{u}(z)}{\bar{u}(z)} = \frac{u_*}{\bar{u}(z)} \ln \left| \frac{z - d_0}{\bar{u}(z)} \right|$ (1) where \overline{u} is the average wind velocity, k=0.4 the von Karman constant, u_* the friction velocity, while z_0 and d_0 are the roughness length and displacement height, respectively.

These are generally estimated on the basis of the morphometric or the anemometric methods, while u_* is usually referred to the ISL. In what follows, algorithms that relate z_0 and d_0 to geometric parameters such as H, λ_P and λ_F are investigated.

The aim of this work is to compare wind speed profiles determined using (1) and the formulation proposed by Pelliccioni et al. (2015) with experimental data measured in the water-channel.

Experiments

(3) **Morphometric methods**

Two classes of morphometric methods are considered: (i) methods that use H (height-based approach); (ii) methods that use H and λ_{P} .	We also test the formulation by Pelliccioni et al. (2015), PML15 , wh new form of (1):	o proposed a
In the first, simpler method, z_0 and d_0 are calculated as a fraction of the average building height, viz.:	$\overline{u}(z) = \frac{u_*}{k} \ln \left[\frac{z - d_0}{z_{0I}(z)} \right]$	(6)
$\begin{cases} z_0 = f_0 H \\ d_0 = f_d H \end{cases} $ (2)	where: $z_{01}(z) = \alpha \exp[-z/L_C]$	(7)
where f and f are empirical coefficients. Several choices of this couple of		

DICEA - DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE

4 **Results**

Figure 2: Modelled and observed non-dimensional horizontal velocity vs. z/H for (a) $\lambda_{\rm P}$ =0.5 and (b) $\lambda_{\rm P}$ =0.33.

Figure 3: Reproducibility parameter as a function of λ_{P} for the five formulations based on (1) and (6).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-0.008	-0.006	-0.004 -	-0.002	0 0	0.2	0.4	0.6	0.8	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ī	$u'w'/U^2$				ū	/U		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 1:			· · · ·			Table	<u>e 2</u> :			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	z _o and d _o The corr Figure 1	esponding fri are also repo	ith the morp ction velocit rted.	hometric met ies based o	hods based on the profile	on H and λ_{p} . es shown in	z ₀ an meth	d d ₀ ca lods bas	lculated wit sed on H.	h the mo	orphometr
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		λ _P	0.5	0.4	0.36	0.33		<u> </u>	z ₀ (m)	(0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		u _* (m/s)	0.0221	0.0255	0.0265	0.0335	G099	99	$d_0(m)$	(0.014
KR04 $d_0(m)$ 0.01800.01680.01620.0155 α (m)0.0036 K61 $z_0(m)$ 0.09100.00710.00640.0057 PML15 $L_C(m)$ 0.0694 K61 $d_0(m)$ 0.01600.01500.01490.01450.0145 γ (m)0.0036 C71 $z_0(m)$ 0.00240.00380.00440.00490.0049 γ (m)0.0003		z ₀ (m)	0.0014	0.0016	0.0016	0.0016			()		00061
K61 $z_0 (m) \\ d_0 (m)$ 0.0910 0.0071 0.0064 0.0057 0.0149 PML15 $L_c (m) $ 0.0694 0.0038 K61 $z_0 (m) \\ d_0 (m)$ 0.0024 0.0038 0.0044 0.0049 0.0145 0.0049 0.0049 0.0085 PML15 $L_c (m) $ 0.0694 0.0003 C71 $z_0 (m) \\ d_0 (m)$ 0.0134 0.0105 0.0095 0.0085 0.0085 PML15 L_c (m) 0.0694 0.0038	KKU4	$d_{0}(m)$	0.0180	0.0168	0.0162	0.0155			α (m)	0.	00361
K61 d_0^{-} (m) 0.0160 0.0150 0.0149 0.0145 γ (m) 0.0003 C71 z_0^{-} (m) 0.0024 0.0038 0.0044 0.0049 0.0049 0.0038 d_0^{-} (m) 0.0134 0.0105 0.0095 0.0085 γ (m) 0.0003		z ₀ (m)	0.0910	0.0071	0.0064	0.0057	PM	L15	L _C (m)	0.	06944
z_0 (m) 0.0024 0.0038 0.0044 0.0049 d_0 (m) 0.0134 0.0105 0.0095 0.0085	K61	d ₀ (m)	0.0160	0.0150	0.0149	0.0145			γ (m)	0.	00038
$d_0(m) = 0.0134 = 0.0105 = 0.0095 = 0.0085$	674	z ₀ (m)	0.0024	0.0038	0.0044	0.0049					
	C/1	d ₀ (m)	0.0134	0.0105	0.0095	0.0085					

<u>5</u> <u>Conclusions</u>	References
Trends for AR=2 differs substantially from the others: it suggests that the transition between the skimming flow and the wake interference regime coincides with that of the 3D flow (λ_p =0.35), rather than with that conventionally recognised for 2D flows (AR=1.5, i.e. for λ_p =0.4) For λ_p =0.5 (skimming flow), all the models underestimate observations. Overall, K61 shows the larger discrepancy between modelled and observed velocity; the other four models overestimate the measurements close to the canopy layer, while they show a large underestimation above it. In contrast, for λ_p =0.3 a substantial lowering of the gap with observations occurs for all the five models, both close to the canopy and at higher levels. The agreement improves particularly for GO99, KR04 and PML15, while K61 and C71 show again a general underestimation of the velocity. The agreement with observation is reasonably good (RP<15%) for GO99, KR04 and PML15 when λ_p =0.33, while large errors occur for K61 and C71. It means that all models work reasonably well for low λ_p , i.e. for the wake interference regime.	 Fernando, H. J. S., 2010: Fluid dynamic of urban atmospheres in complex terrain. <i>Annu. Rev. Fluid Mech</i>, 42, 365-389. Pelliccioni, A., P. Monti and G. Leuzzi, 2015: An alternative wind profile formulation for urban areas in neutral conditions. <i>EFM</i>, 15, 135-146. Counihan, J., 1971: Wind tunnel determination of the roughness length as a function of fetch and density of three-dimensional roughness elements. <i>AE</i>, 5, 637-642. Kastner-Klein, P. and M. W. Rotach, 2004: Mean flow and turbulence characteristics in an urban roughness sublayer. <i>BLM</i>, 111, 55-84. Kutzbach, J., 1961: Investigation of the modifications of wind profiles by artificially controlled surface roughness. M.S. thesis, University of Wisconsin-Madison. Grimmond, C. S. B. and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of urban surface form. <i>JFM</i>, 38, 1261-1292.

HARMO 18 – 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 9-12 October 2017, Bologna, Italy.