CLUSTERING OF ATMOSPHERIC AND EMISSION CONDITIONS THAT LEAD TO MODELLED PEAK OZONE CONCENTRATIONS

Andrea L. Pineda Rojas¹ - Nicolás A. Mazzeo²

¹Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI-IFAECI/CNRS, Buenos Aires, Argentina ²Departamento de Ingeniería Química, Facultad Regional Avellaneda, Universidad Tecnológica Nacional, CONICET, Buenos Aires, Argentina

MOTIVATION AND OBJECTIVES

An application of a simple urban air quality model (DAUMOD-GRS, [1]) shows that summer maximum O_3 hourly concentrations (C_{max}) above 40 ppb [one of the accepted thresholds to protect vegetation] occur outside the Metropolitan Area of Buenos Aires (MABA) where the absence of observations impedes model testing [2]. In addition, those relatively high values present the greatest model uncertainty caused by possible errors in model input variables [3]. In this context, a probability assessment of such exceedances may provide a more robust estimate than a deterministic one.

This work presents a Monte Carlo (MC) evaluation of the probability of occurrence of peak O₃ hourly concentrations greater than 40 ppb in the MABA during a typical summer season, using the DAUMOD-GRS model. In order to overcome the limitations due to the size of the MC outcomes, a clustering analysis is performed aiming to identify the environmental conditions under which C_{max} occurs and to gain insight on the model performance outside the MABA, where the highest values are obtained.

PDF 2σ / E(%)

LN

LN

LN

LN

LN

30

30

12.5

Input variable

WS (%)

DIR (°)

T (°C)

KST

SC (okta)

TSR (%)

QNO_x (%)

QVOC (%)

[O₃]_r (%)

METHODOLOGY

Probabilistic evaluation of C_{max} > 40 ppb

The DAUMOD-GRS model

DAUMOD-GRS is an urban-scale atmospheric dispersion model which allows estimation of groundlevel urban background concentrations of NO₂ and O₃ resulting from area source emissions of NO_x and VOCs. Its performance evaluation in the MABA is discussed in [1] and [2].

Base case conditions

- Surface hourly and sounding meteorological data from a typical summer (2007)
- MABA area source emissions of NO_x and VOCs
- Clean air regional background concentrations

Probability density functions	
(N: normal, LN: lognormal)	
and uncertainty ranges of the	
model input variables [4]	

MC simulations:

\rightarrow P(C_{max}>40 ppb) = No. of exceedances / N

Clustering analysis of the Monte Carlo outcomes

 \succ An object is a set of conditions in which C_{max} occurs: its hour of occurrence and nine perturbed model input variables (M=10)

>Each variable is scaled subtracting its mean and dividing by its standard deviation across the whole modelling domain:

 \succ The Matlab function kmeans is used with k=4, and 100 random initializations are performed to avoid suboptimal solutions

RESULTS AND CONCLUSIONS

Variables' mean and 95% confidence range vs cluster number

Wind roses of each cluster

Cluster #1

ENE

ESE

ENE

ENE

% N

Probability of occurrence of values of $C_{max} \ge 40$ ppb

-70 - 60 50 MABA - 30 ·10

Cluster #1 Cluster #2 -Cluster#3 -Cluster #4 QNOx QVOC [O3]r Cmaxv Variable Variables averaged for each cluster

	max	Н	WS	Т	SC	KST	TSR	QNOx	QVOC
(p	opb)		(m/s)	(°C)	(okta)		(W/m²)	(g/km ² s) (g	/km ² s)
1 2	20.2	13	5.1	27.0	1	2	854.9	1.2	0.6
2 3	32.9	7	1.3	22.4	1	5	166.5	0.1	0.0
3 3	30.8	15	1.7	24.5	4	4	119.8	0.3	0.1
4 1	L8.5	14	6.0	26.8	1	2	762.3	6.3	5.1

C_{max}: summer maximum O₃ hourly concentration

Dominant cluster

H: hour of occurrence of C_{max} WS: wind speed T: air temperature SC: sky cover KST: atmospheric stability class TSR: total solar radiation QNO_x : local emission rate of NO_x QVOC: local emission rate of VOCs $[O_3]_r$: regional background O_3 concentration

REFERENCES

[1] Pineda Rojas, A.L.; Venegas, L.E. 2013a. Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO₂ concentrations. Atmos. Res., 120-121, 147-154. [2] Pineda Rojas, A.L.; Venegas, L.E. 2013b. Spatial distribution of ground-level urban background O₃ concentrations in the Metropolitan Area of Buenos Aires, Argentina. Environ. Pollut., 183, 159-165.

[3] Pineda Rojas, A.L., Venegas, L.E.; Mazzeo, N.A. 2016. Uncertainty of modelled urban peak O₃ concentrations and its sensitivity to input data perturbations based on the Monte Carlo analysis. Atmos. Environ., 141, 422-429.

[4] Hanna, S.R.; Chang, J.C.; Fernau, M.E. 1998. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos. *Environ.*, 32, 21, 3619-3628.

CONCLUSIONS

- \checkmark The probability of occurrence of values of $C_{max} \ge 40$ ppb is very low in the urban area and greater than 70% outside the MABA
- ✓ From the clustering analysis, three main clusters with a marked spatial distribution resembling that of the O_3 precursor species emissions are obtained

✓ Differences in the mean variables of the clusters suggest different main drivers on ozone formation: photochemical (clusters 1, 3 and 4) vs dispersive (cluster 2)