

EVALUATING THE ROBUSTNESS OF THE SHERPA AIR QUALITY MODEL THROUGH THE APPLICATION OF GLOBAL SENSITIVITY ANALYSIS TECHNIQUES

*E. Pisoni*¹, *D. Albrecht*², *R. Rosati*², *S. Tarantola*³, *P. Thunis*¹

European Commission, Joint Research Centre

¹Directorate for Energy Transport and Climate, Air and Climate Unit ²Directorate for Competences, Modelling Indicators and Impact Evaluation Unit

³Directorate Energy Transport and Climate, Energy Security Distribution and Markets Unit

- 1. Introduction of challenges and tools
- 2. How to apply the sensitivity analysis to an integrated assessment tool, SHERPA case
- 3. Results
- 4. Conclusions

Background

Europe's air quality is slowly improving, but fine particulate matter nitrogen oxides and ground-level ozone in particular continue to cause serious impacts on health, especially in urban environments

- 400.000 premature deaths in the EU28 (PM2.5)
- Most country (cities) fail to fulfill the EU limit values
- Compliance is an Air Quality Directive obligation \rightarrow air quality plans

Screening for High Emission Reduction Potentials on Air quality

- Is my model robust for policy applications ?
- Which are the main sources of uncertainty?
 - Model coefficients?
 - Input data
 - ...
- Where should I put my efforts to further improve the model ?

- 1. Introduction of challenges and tools
- How to apply the sensitivity analysis to an integrated assessment tool, SHERPA case
- 3. Results
- 4. Conclusions

Steps performed

Select sources of uncertainty

- Source receptor model coefficients (α and ω ...see next slide)
- Input (emissions)
- Policies (decisions on the measures)

Propagate the uncertainty with the model

- Simulating with SHERPA the combinations from the previous sources of uncertainties

Compute the sensitivity analysis indicators (see next slides)

- How much SHERPA results depend on the different sources of uncertainty?

Sources of uncertainty and coefficients

1. Source receptor equation

$$\Delta C_i = \sum_{j}^{N_{prec}} \sum_{k}^{N_{cell}} a_{i,j,k} \Delta E_{j,k}$$
Concentration

Concentration *j* change

Emissions change

3. Intervals for uncertainty sampling

Coefficient	Nominal	Std		
W_NOX	1,97	0,02		
W_NH3	1,60	0,02		
W_PPM	2,32	0,018		
W_ S02	1,34	0,01		
a_ _{NOX}	0,05	0,005		
а _{NH3}	0,07	0,01		
a_ _{PPM}	1,97	0,04		
a_ _{so2}	0,01	0,004		

2. Coefficients of the source receptor

$$a_{i,j,k} = \alpha_{i,j} (1 + d_{ik})^{-\omega^{i,j}}$$

Input considered are emissions of:

- NOx (30%)
- NH3 (50%)
- PPM (50%)
- SO2 (10%)

Policies have been defined between Current Legislation and Maximum Feasible Reductions:

- 25%
- 50%
- 75%
- 100%

Propagate uncertainty and compute indicators

Combination of model coefficient, emissions and policy perturbation

Concentrations

SENSITIVITY INDEX: how much of the output variance depends on the variance of Y when perturbing i

TOTAL EFFECT SENSITIVITY INDEX : as the Si, but considering the interactions terms

$$S_{i} = \frac{V[E(Y|X_{i})]}{V(Y)}$$
$$T_{i} = 1 - \frac{V[E(Y|X_{\sim i})]}{V(Y)}$$

 $\nabla \Gamma \nabla \Delta \nabla \nabla \nabla$

- 1. Introduction of challenges and tools
- 2. How to apply the sensitivity analysis to an integrated assessment tool, SHERPA case
- 3. Results
- 4. Conclusions

Analysis performed at the moment on 15 cities (here showing the results only for 3)

Policy profile	Total order Sensitivity Indices								Sum
	ω-NOx	ω-NH3	ω -ppm	ω-so2	α_NOx	α_ NH3	α_ppm	α_so2	
100-100-100-100	0.01	0.01	0.11	0.01	0.24	0.09	0.16	0.35	0.98
C: 75 -25-25-25	0.04	0.00	0.03	0.01	0.69	0.03	0.04	0.11	0.95
B: 25- 75 -25-25	0.00	0.05	0.06	0.01	0.13	0.45	0.09	0.20	0.99
A: 25-25-25- 75	0.01	0.01	0.11	0.01	0.24	0.09	0.16	0.35	0.98

 α 's show higher values: a good way to reduce the uncertainty on the ΔC_i is to reduce uncertainty of the α 's.

 ω 's values have low 'influence' values

Adding the input and policy perturbation

London Results

Emission uncertainty is higher than Model coefficient uncertainty

As wished, the policy variability is higher than the uncertainties

Perturbing the model, coefficient and policy

Helsinki

Si

🖾 Ti

Same as London, with higher sensitivity to primary PM

Perturbing the model, coefficient and policy

Milan

Research

Same as London, with higher sensitivity to primary PM

Policy and emission uncertainty are at a similar level

- 1. Introduction of challenges and tools
- 2. How to apply the sensitivity analysis to an integrated assessment tool, SHERPA case
- 3. Results
- 4. Conclusions

Conclusions

Sensitivity analysis allows to:

- Understand the key source of uncertainty (model? input? policy?) (In our case input are very important!)
- Understand where to put effort in model development
- Identify that the 'policy' is an important factor (but in some cases further work is needed to improve input data)

