

Institute for Defense Analyses

4850 Mark Center Drive • Alexandria, Virginia 22311-1882

18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Bologna, Italy 9-12 October, 2017

Downwind Chlorine Hazard Estimates for the 2015-2016 Jack Rabbit II Campaign

Kevin Luong, Nathan Platt, and Jeffry Urban

Institute for Defense Analyses

Sponsor: Defense Threat Reduction Agency – Joint Science and Technology Office for Chemical and Biological Defense (DTRA–JSTO/CBD)

IDA Jack Rabbit Campaign (2010, 2015-16)

Jack Rabbit I

 2010: 10 releases of either 1 or 2 tons of chlorine or ammonia into a depression

Jack Rabbit I release

Jack Rabbit II

- Aug-Sept 2015: 5 releases of 5-10 short tons of chlorine
- Aug-Sept 2016: 4 releases of 10-20 short tons of chlorine

Jack Rabbit II release

IDA Jack Rabbit II FY15/FY16 Details

- Liquefied pressurized chlorine released from a large storage tank
- JRII FY15 focused on how the dense gas would flow through urban areas
 - Shipping containers and vehicles used to create a mock urban area
- JRII FY16 focused on how the dense gas would flow through open terrain
- Release amounts varied between 4.5 and 20 metric tons
- High-resolution samplers were used to detect chlorine concentration levels:
 - Within the vehicles
 - Within some shipping containers (modified to mimic residential and office structures)
 - Within the urban array in FY2015
 - In arcs up to 11km from the release

Mock Urban Area

IDA Brief Summary of JRII Releases

	Release 1 Start		Release 1 Stop		Release 2 Start		Release 2 Stop					Release
										Actual	Release	Point
	Date	UTC Time	Date	UTC Time	Date	UTC Time	Date	UTC Time		Chlorine	Point	Orientati
	(mm/dd/yy	(hh:mm:s	(mm/dd/y	(hh:mm:s	(mm/dd/	(hh:mm:s	(mm/dd/	(hh:mm:s	Release	Weight	Size	on From
Trial)	s)	y)	s)	yy)	s)	yy)	s)	Chemical	(kg)	(inches)	Vertical*
1	8/24/2015	13:35:45	8/24/2015	13:36:43	NA	NA	NA	NA	Cl2	4509	6	180/NA
2	8/28/2015	15:24:21	8/28/2015	15:25:10	NA	NA	NA	NA	Cl2	8151	6	180/NA
3	8/29/2015	13:56:55	8/29/2015	13:57:31	NA	NA	NA	NA	Cl2	4512	6	180/NA
4	9/1/2015	14:38:50	9/1/2015	14:39:33	NA	NA	NA	NA	Cl2	6970	6	180/NA
5	9/3/2015	13:28:19	9/3/2015	13:29:09	NA	NA	NA	NA	Cl2	8303	6	180/NA
6	08/31/16	14:23:35	08/31/16	14:24:30	NA	NA	NA	NA	Cl2	8381	6	180/NA
7	09/02/16	13:56:00	09/02/16	13:57:20	09/02/16	14:07:08	09/02/16	14:09:20	Cl2	9075	6	135 / 180
8	09/11/16	15:01:45	09/11/16	15:04:42	09/11/16	15:17:16	09/11/16	15:26:27	CI2	9089	6	0/180
9	09/17/16	14:05:30	09/17/16	14:10:21	NA	NA	NA	NA	CI2	17706	6	180/NA

Trials 2, 4, 5, 6, 7, and 8 were selected for further analysis to ensure that downwind hazard estimates were derived from comparably-sized releases

IDA Chlorine Samplers in the Jack Rabbit II Campaign

Azimuth of grid centerline: 345 deg 1.0 1000 m 0.8 0.6 400 m 0.4 200 m 0.2 (km) 0.0 > -0.2 -0.4 MiniRAE @ 0.3 m 2 MiniRAE collocated @ 0.3 m Canary @ 0.3 m -0.6 1 Canary @ 0.3 m & 2 MiniRAE @ 3 & 6 m 1 Canary & 1 MiniRAE collocated @ 0.3 m -0.8 3 MiniRAE @ 0.3, 3, & 6 m -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0 .2 x (km)

Close-in Chlorine Samplers

Sampler Arcs at 200, 500, and 1 km (a) 0.3 m AGL

Outer Arc Chlorine Samplers

Sampler Arcs at 2, 5, and 11 km @ 0.3 m AGL

IDA How far does the downwind hazard from JRII extend?

- Examine chlorine concentration time series measured at each sampler
 - 6 releases varying between 6.9 and 9.1 metric tons
 - Sampler arcs at 0.2, 0.5, 1, 2, 5, and 11 km @ 0.3 m above ground level
- Predict human health effects at each sampler location
 - Lethal effects calculations are based on the toxic load model with parameters obtained from *Review and assessment of chlorine mammalian lethality data and the development of a human estimate* by D.R. Sommerville et al., Military Operations Research, V15 N3 2010
 - Includes toxicity parameters for both the U.S. military population and the general U.S. population
 - Severe and mild effects calculations are based on the toxic load model with parameters obtained from *Development of Exposure Guidelines for Acute, Non-Lethal Health Effects Following Exposures to TICs/TIMs – Chlorine*, D. Winkel, July 25, 2014
 - Acute Exposure Guideline Levels (AEGLs) from the U.S. EPA
- Result: Estimates of the downwind extent of the chlorine hazard for the JRII comparably-sized releases

IDA Overview of Time-Dependent Inhalation Toxicology

Exposure-response relationship

For some toxic agents, the population response depends on the time history of the exposure

Common phenomenological measures of exposure: Dosage = $C \times T$ (~total amount of agent delivered) Toxic Load = $C^n \times T$ (depends on time history)

Until recently, laboratory toxicology experiments were designed to test the effects of time-dependent exposures using idealized square-pulse profiles.

Real-world exposure profiles, however, can be highly fluctuating and intermittent.

IDA Toxic Load Model for Time-Varying Exposures

Different models have been proposed to extend the toxic load model to the general case of time-varying exposures.

All the proposed extensions reduce to the standard toxic load, $TL = C^n \times T$, in the case of square-pulse exposures.

We investigated three different proposed extensions that in general bracket potential toxic load exposures and got similar results for the downwind hazard distance, so we will present results for only one proposed extension.

Integrated Concentration (or ten Berge) extension of the toxic load model:

$$TL(x) = \int [c(x,\tau)]^n d\tau$$

x =location of exposure $\tau =$ time

Note: We bin-averaged $c(x,\tau)$ in 0.1 min increments to account for the approximate duration of a single breath.

IDA Toxic Load Parameters for Lethal Effects

General Population

- n (toxic load exponent) = 2.75
- LD₅₀ (median lethal dose) = 9500 mg-min/m³
- Probit slope based on concentration = 6

• TL₅₀ (median lethal toxic load):
$$TLGeneral_{50} = 2 \times \left(\frac{9500}{2}\right)^{10} = 2.5818881 \times 10^{10}$$

• Lethality Fraction (or probability of death): $FractionLethalEffects _General = \Phi\left(\frac{6}{2.75} \times \log_{10}\left(\frac{TL}{2.5818881 \times 10^{10}}\right)\right)$

Military Population

- *n* (toxic load exponent) = 2.75
- LD₅₀ (median lethal dose) = 13500 mg-min/m³
- Probit slope based on concentration = 8
- TL₅₀ (median lethal toxic load):

$$TLMilitary_{50} = 2 \times \left(\frac{13500}{2}\right)^{2.75} = 6.7860237 \times 10^{10}$$

• Lethality Fraction (or probability of death):

FractionLethalEffects
$$_Military = \Phi\left(\frac{8}{2.75} \times \log_{10}\left(\frac{TL}{6.7860237 \times 10^{10}}\right)\right)$$

< > 2.75

where $\Phi(\cdot)$ denotes the Standard Normal CDF

Calculations presented on this slide are only applicable to n = 2.75

IDA Lethality Contours (General Population) – JRII FY15 Trial 2

Contours are interpolated from single-sampler fractional lethality estimates

IDA JRII Lethality Distances for the General Population

Notes:

- The plume for trial 5 went off grid

- Pink/Red dots indicate that some samplers on the arc reached saturation limit:

- 200 m 2 km arcs saturation limit > 2000 ppm
- 5 km 11 km arcs saturation limit is 50 ppm

IDA JRII Lethality Distances for the Military Population

Notes:

- The plume for trial 5 went off grid

- Pink/Red dots indicate that some samplers on the arc reached saturation limit:

- 200 m 2 km arcs saturation limit > 2000 ppm
- 5 km 11 km arcs saturation limit is 50 ppm

IDA Toxic Load Parameters for Mild and Severe Effects

Mild

- n (toxic load exponent) = 2.75
- $TL_{50} = 7500 ((mg/m^3)^{2.75})$ -min)
- Probit slope based on toxic load = 0.95
- Mild Effects Fraction:

$$FractionMildEffects = \Phi\left(0.95 \times \log_{10}\left(\frac{TL}{7500}\right)\right)$$

Severe

- *n* (toxic load exponent) = 2.75
- TL₅₀ = 1.2e8 ((mg/m³)^{2.75})-min)
- Probit slope based on toxic load = 2.9
- Severe Effects Fraction:

FractionSevereEffects =
$$\Phi\left(2.9 \times \log_{10}\left(\frac{TL}{1.2 \times 10^8}\right)\right)$$

Where $\Phi(\cdot)$ denotes the Standard Normal CDF

Calculations presented on this slide are only applicable to n = 2.75

IDA Mild Effects Contours – JRII FY15 Trial 2

IDA JRII Mild Effects Downwind Distances

Notes:

- The plume for Trial 5 went off grid
- Pink/Red dots indicate that some samplers on the arc reached saturation limit:
 - 200 m 2 km arcs saturation limit > 2000 ppm
 - 5 km 11 km arcs saturation limit is 50 ppm

IDA JRII Severe Effects Downwind Distances

Notes:

- The plume for Trial 5 went off grid
- Pink/Red dots indicate that some samplers on the arc reached saturation limit:
 - 200 m − 2 km arcs saturation limit > 2000 ppm
 - 5 km 11 km arcs saturation limit is 50 ppm

IDA Acute Exposure Guideline Levels (AEGLs)

AEGLs are <u>conservative guidelines</u> on human exposures due to toxic airborne hazards. Each AEGL has an airborne concentration and associated exposure time: the <u>concentration is not to be exceeded</u> for exposures of that duration in order to ensure a <u>low probability</u> of experiencing certain health effects.

- The levels are:
 - **AEGL-1** Discomfort, irritation, non-disabling/reversible effects
 - **AEGL-2** Impaired ability to escape, long-lasting/serious/irreversible effects
 - **AEGL-3** Life threatening effects, death
- The conditions corresponding to each level for a given hazard were determined through a worldwide private- and public-sector effort, now led by the U.S. EPA with assistance from the National Academies
- AEGLs are given as an average concentration for specific exposure times:
 - 10 min, 30 min, 1 hour, 4 hours, 8 hours

IDA AEGL for Airborne Chlorine Exposure in ppm

	Exposure Duration									
	10 min	30 min	60 min	4 hr	8 hr					
AEGL 1	0.50	0.50	0.50	0.50	0.50					
AEGL 2	2.80	2.80	2.00	1.00	0.71					
AEGL 3	50.00	28.00	20.00	10.00	7.10					

AEGL 1 are constant value for different exposure levels AEGL 2 are constant value up to 30 minute exposure; utilize toxic load model for longer exposures AEGL 3 utilize toxic load model

IDA Determining AEGL-3 Values Based on Variable Exposure Time

- The AEGL-3 concentration thresholds are nearly linear on a log-log plot vs. exposure time
- We performed a linear regression that allowed us to estimate the AEGL-3 concentration thresholds for arbitrary exposure times

Log-log plot of AEGL-3 exposure time and concentration threshold

IDA AEGLs Exceeded at Each Sampler (JRII FY15 Trial 1)

IDA Maximum AEGL Reached at Each Downwind Distance

- AEGL-3: > 2 km, but likely < 5 km
 Trial 7 extends past 5 km
- AEGL-2: Up to at least 11 km
- AEGL-1: Beyond 11 km

Notes:

- The plume for Trial 5 went off grid
- Pink/Red dots indicate that some samplers on the arc reached saturation limit:
 - 200 m 2 km arcs saturation limit > 2000 ppm
 - 5 km 11 km arcs saturation limit is 50 ppm

IDA Summary

- We used data from the Jack Rabbi II FY15/FY16 campaign (sampler measurements of the chlorine time series) to estimate downwind hazard distances for comparablyreleased amount releases based on human effects consequence assessment models
 - Releases involved between 6.9 and 9.1 metric tons of chlorine

Estimated downwind hazard distances:

- Lethal effects: Expected up to 1 km; Trial 7 predicts > 2% lethality at 2 km
- Severe effects: Expected between 2 km and 5 km; Trial 7 predicts severe effects beyond 5 km
- Mild effects: Beyond 11 km (the farthest downwind observations in JRII)

Estimated downwind AEGL extent:

- AEGL-3: 2 to 5 km with some possibility extending past 5 km (Trial 7)
- AEGL-2: Up to at least 11 km (the farthest downwind observations in JRII)
- AEGL-1: Beyond 11 km (the farthest downwind observations in JRII)

We note that since our hazard distance estimates are produced from chlorine concentrations that were directly measured (i.e., not modelled), the accuracy of these estimates depends only on the quality of the health effects models we applied, and not on the quality of any atmospheric transport and dispersion model or container release (chemical source term) model.