18<sup>th</sup> International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

9 – 12 October – Bologna, Italy



# PROGRESS IN URBAN AIR QUALITY ASSESSMENT: CFD MODELLING OF A WHOLE TOWN IN SPAIN

E. Rivas<sup>1</sup>, J.L. Santiago<sup>1</sup>, F. Martin<sup>1</sup>, A. Ariño<sup>2</sup>, J.M. Santamaría<sup>3</sup>, J.J. Pons<sup>4</sup>

<sup>1</sup>Atmospheric Pollution Division, Environmental Department, CIEMAT, Spain
<sup>2</sup>Environmental Biology Department, University of Navarra, Spain
<sup>3</sup>Chemistry Department, University of Navarra, Spain
<sup>4</sup>Department of History, History of Art and Geography, University of Navarra, Spain

esther.rivas@ciemat.es







USTRIA Centro de Investiga Energéticas, Medicam y Tecnológica



### Contents

Introduction

Area of Study and Experimental Data

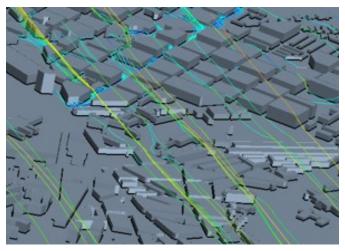
Modelling Approach

- \* CFD model description and simulation setup
- \* Numerical methodology

Results

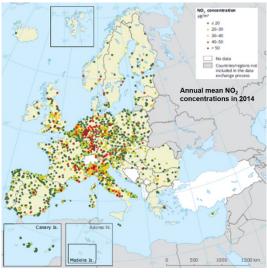
- \* Model evaluation with air quality monitoring stations
- Model evaluation against experimental data from cyclists with microsensors

Conclusions

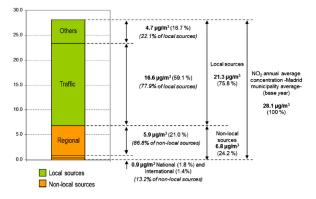



### Introduction

#### Urban air quality as big environmental problem


□ Air pollution vs. human health

□ Main source: The road traffic.




Perspective view of the wind lines in Pamplona when the wind blows North direction.

03/21



Red and dark red dots correspond to values above the EU annual limit value and the WHO AQG (40  $\mu$ g/m3). Only stations with > 75 % of valid data have been included in the map (*EEA*, 2016a).



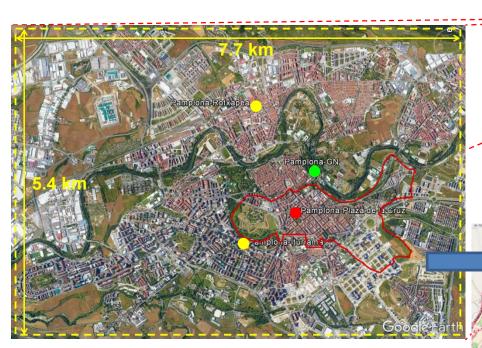
Result of the source apportionment analysis (annual NO2 mean for the whole Madrid municipality) (*Borge et al. 2014*).



## Introduction

LIFE-RESPIRA project goal: To improve urban air quality and reduce exposure to air pollution by promoting healthy and sustainable mobility.

Our LIFE+RESPIRA project task: To develop of an specific tool able to reproduce accurate pollutant maps of the Pamplona's city (Spain).


Objective of this work: To compute the 2016 hourly NO<sub>2</sub>, NO and NOx maps for annual and seasonal average days by means of a CFD-RANS methodology.





### Area of Study and Experimental Data

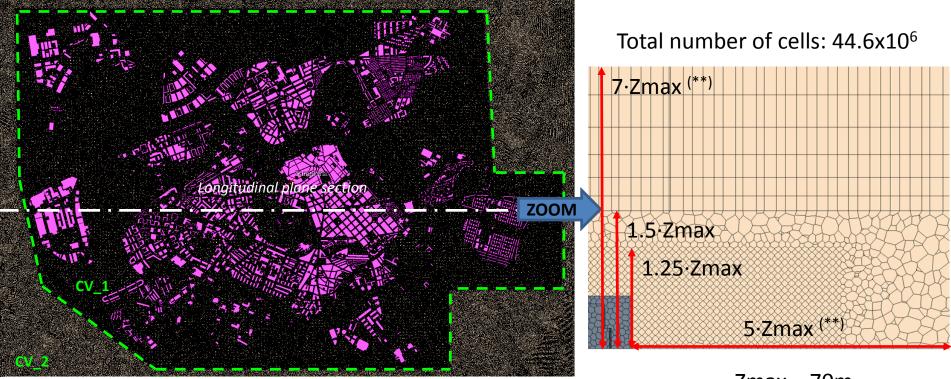
#### **Urban Morphology and Large-scale monitoring**





Pamplona (Source: Google Earth)

Aerial view of Pamplona's City (Source: Google Earth)


05/21

Roads traveled by cyclists during 2016 (provided by University of Navarra)



DATA POINTS

#### **CFD model description and simulation setup: Mesh Model**



CFD Mesh model (\*)

Zmax = 70m

(\*) CFD tool: STAR-CCM+9.04.011®

HARMO18

(\*\*) Franke et al. 2007

#### **CFD model description and simulation setup: Physical Models**

Steady State Simulations

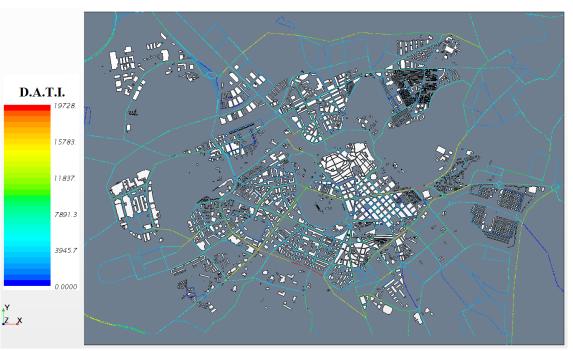
Segregated Flow Model

#### *RANS* as turbulent approach:

- Realizable K-ε Two-Layer model
- All Y+ wall hybrid treatment

Neutral atmospheric conditions

Constant air density


Default values of STAR-CCM + 9.04.011<sup>®</sup> as free parameters of the turbulent model



#### CFD model description and simulation setup: NOx dispersion

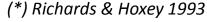
- + an additional passive scalar transport equation
- + Pollutant emissions at roads proportional to traffic intensity
- + Without atmospheric chemistry

$$\left\{\partial_{j}\left(\rho u_{j}C_{CFD}(\vec{r}) - \frac{\mu_{eff}}{Sc_{t}}\partial_{j}C_{CFD}(\vec{r})\right) = S_{C}\right\}_{j=x,y,z}$$

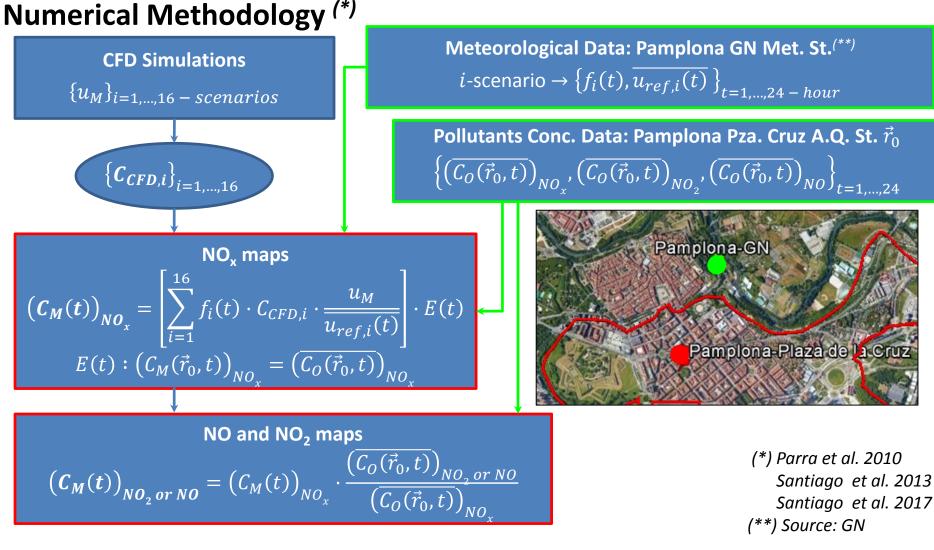


Daily Average Traffic Intensity map in Pamplona's city

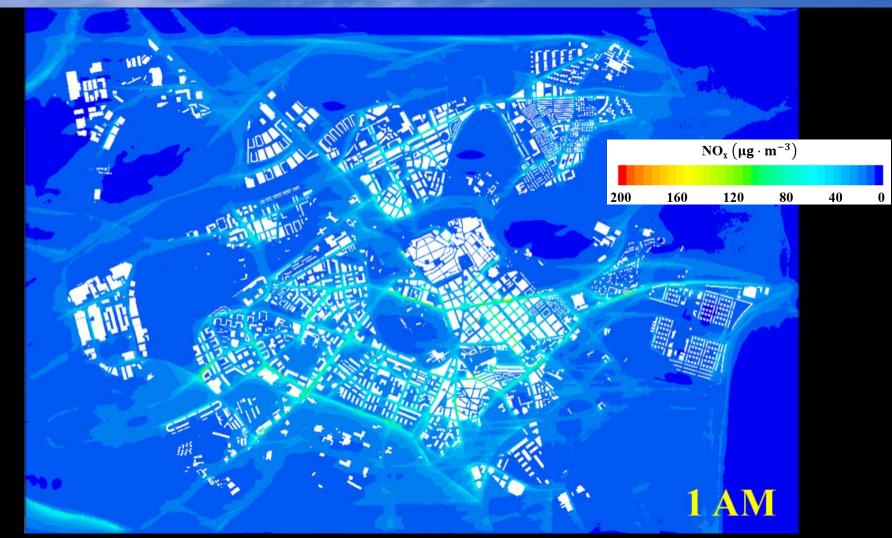



#### **CFD model description and simulation setup: Boundary Conditions**

Building: Solid boundary with surface specification: smooth


Ground: Solid boundary with surface specification: roughness

$$\Box \underline{Inlet^{(*)}}: \quad u(z) = \frac{u_*}{\kappa} ln\left(\frac{z+z_0}{z_0}\right); k = \frac{u_*^2}{\sqrt{C_{\mu}}}; \ \varepsilon = \frac{u_*^3}{\kappa \cdot (z+z_0)}$$
$$\Box Outlet: \quad \Delta P_{in-out} = 0$$


□ <u>Top</u>: Symmetry boundary condition











High resolution hourly maps of  $NO_x$  annual averaged concentration during 2016 at pedestrian level





#### Model evaluation with air quality monitoring stations





#### Model evaluation with air quality monitoring stations: NO<sub>x</sub>

2016-average summer day

2016-average autumn day

2016-average winter day

13/21

50.1

55.9

66.4

**11AM** 

4AM

1AM

0.666

0.826

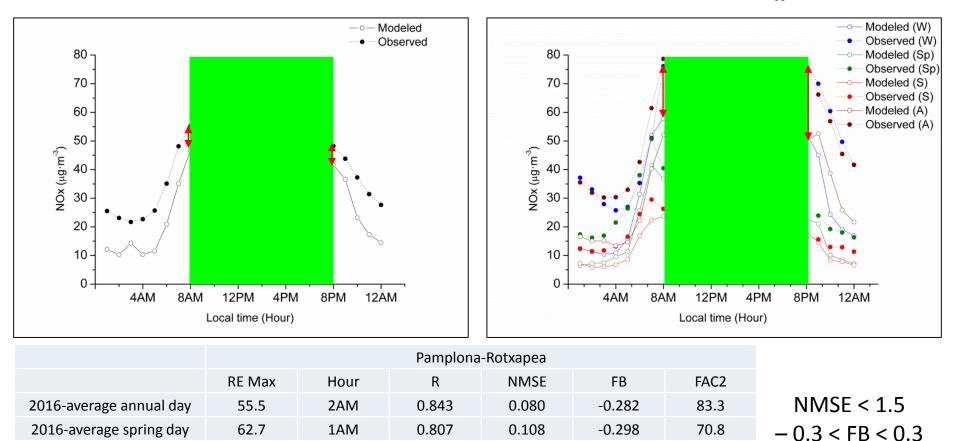
0.814

0.108

0.099

0.161

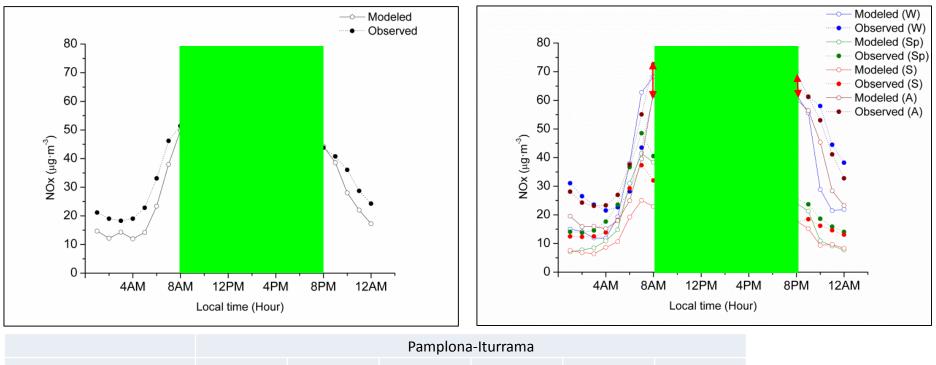
-0.103


-0.325

-0.439

100.0

83.3


70.8



| A STATISTICS |              |
|--------------|--------------|
| HARMO        | $\mathbf{O}$ |

(\*) Chang & Hanna 2005 Goricsán et al. 2011

#### Model evaluation with air quality monitoring stations: NO<sub>x</sub>

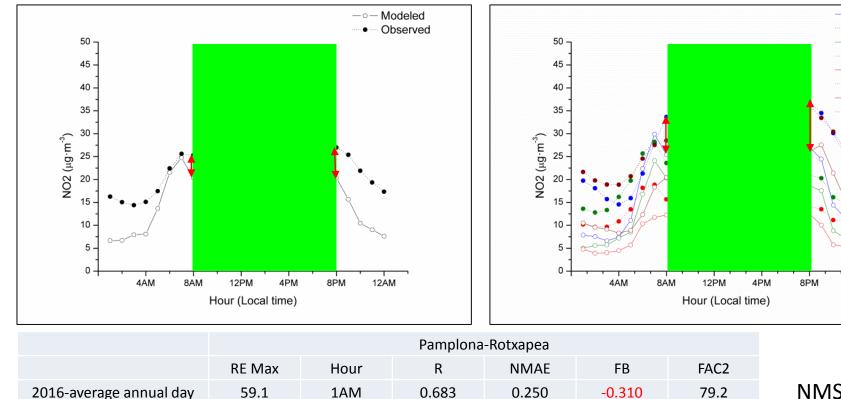


|                         | RE Max | Hour | R     | NMAE  | FB     | FAC2  |                        |
|-------------------------|--------|------|-------|-------|--------|-------|------------------------|
| 2016-average annual day | 37.8   | 5AM  | 0.890 | 0.179 | -0.094 | 100.0 | NMSE < 1.5             |
| 2016-average spring day | 49.6   | 1AM  | 0.895 | 0.214 | -0.173 | 100.0 | - 0.3 < FB < 0.3       |
| 2016-average summer day | 48.5   | 3AM  | 0.811 | 0.247 | -0.187 | 100.0 | (*) Chang & Hanna 2005 |
| 2016-average autumn day | 47.4   | 5PM  | 0.860 | 0.212 | -0.097 | 100.0 | Goricsán et al. 2011   |
| 2016-average winter day | 51.8   | 11PM | 0.817 | 0.245 | -0.193 | 87.5  |                        |



Modeled (W)

Observed (W)


Modeled (Sp) Observed (Sp)

Modeled (S) Observed (S)

- Modeled (A)

Observed (A)

#### Model evaluation with air quality monitoring stations: NO<sub>2</sub>



0.699

0.492

0.893

0.780

0.268

0.308

0.307

0.286

1AM

2AM

5AM

1AM

-0.321

-0.296

-0.396

-0.364

70.8

70.8

75.0

75.0

| NMSE < 1.5             |
|------------------------|
| -0.3 < FB < 0.3        |
| (*) Chang & Hanna 2005 |
| Goricsán et al. 2011   |

12AM



15/21

2016-average spring day

2016-average summer day

2016-average autumn day

2016-average winter day

63.1

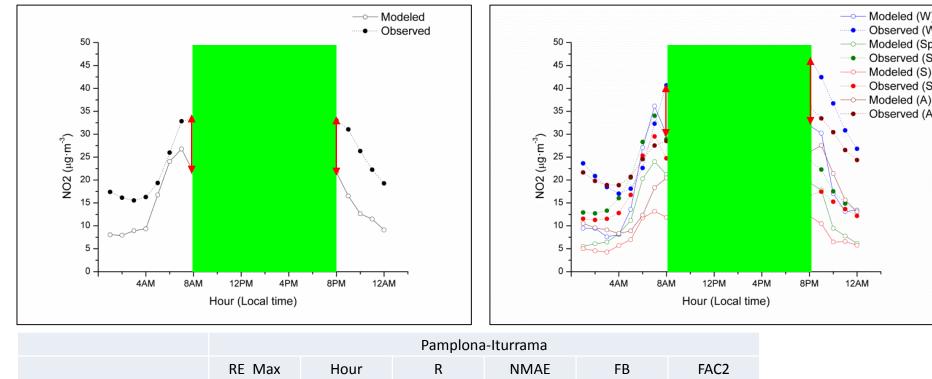
59.4

58.3

60.1

Modeled (W)

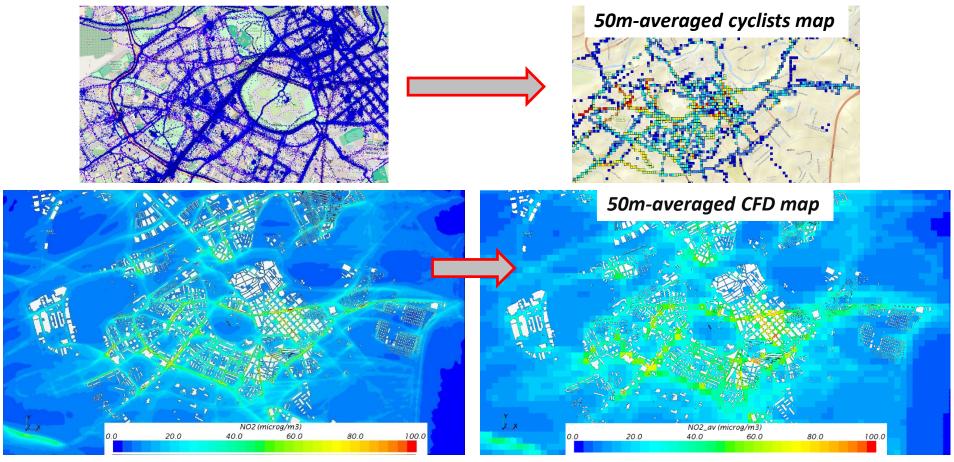
Observed (W)


Modeled (Sp) Observed (Sp)

Modeled (S) Observed (S)

Observed (A)

•


#### Model evaluation with air quality monitoring stations: NO<sub>2</sub>



|                         | RE Max | Hour | R     | NMAE  | FB     | FAC2 |                        |
|-------------------------|--------|------|-------|-------|--------|------|------------------------|
| 2016-average annual day | 53.7   | 1AM  | 0.754 | 0.296 | -0.375 | 83.3 | NMSE < 1.5             |
| 2016-average spring day | 57.4   | 1AM  | 0.880 | 0.292 | -0.370 | 83.3 | - 0.3 < FB < 0.3       |
| 2016-average summer day | 62.9   | 3AM  | 0.741 | 0.392 | -0.526 | 54.2 | (*) Chang & Hanna 2005 |
| 2016-average autumn day | 53.5   | 4AM  | 0.853 | 0.346 | -0.440 | 75.0 | Goricsán et al. 2011   |
| 2016-average winter day | 59.9   | 1AM  | 0.770 | 0.350 | -0.427 | 75.0 |                        |



Model evaluation against experimental data from cyclists with microsensors



High resolution map of  $NO_2$  annual average concentration during 2015 at pedestrian level<sup>(\*)</sup>

17/21

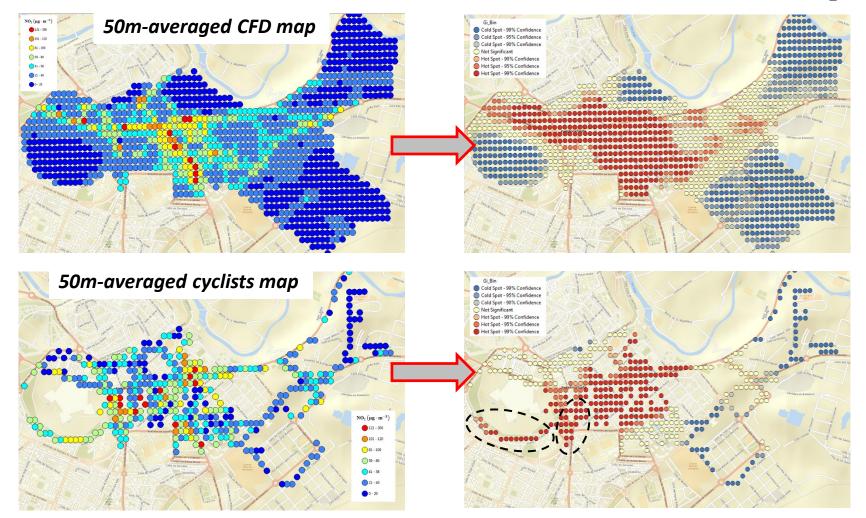
Annual average concentration map of  $\rm NO_2$  spatially-averaged in cells of 50 x 50  $m^{2(*)}$ 

(\*) Lechón Y. et al. Externalities assessment of traffic related NO2 emissions in the city of Pamplona (Spain). 14th ASAAQ Conference. 29 - 31 May 2017 – Strasbourg, France.



#### Model evaluation against experimental data from cyclists with microsensors

Comparison **50m-averaged CFD maps** vs **50m-averaged cyclists maps** presents several difficulties:


- 1. In **CFD maps**, the <u>concentration represents the average value over all cell</u>, while in **cyclists maps**, concentration represents <u>the average value but only over the portion of the cell</u> <u>where the cyclists travel</u>.
- 2. <u>Measurements from cyclists are accompanied by a certain spatial uncertainty due to: the</u> <u>microsensors sampling time and the movement of cyclists.</u> These instruments send data every 10 s (time-averaged concentration and GPS position), but during this period there are uncertainties about the actual GPS positions traveled by cyclists.
- 3. <u>The total number of cyclists in some cells could not be enough to obtain a representative</u> <u>average concentration value.</u>

Therefore, a direct comparison (point-by-point) seems not be suitable ...





#### Model evaluation against experimental data from cyclists with microsensors: NO<sub>2</sub>, 8PM





### Conclusions

- A CFD-RANS methodology has been modified and applied to the entire city of Pamplona to compute high resolution NOx, NO2 and NO maps at pedestrian level.
- This modelling approach is able to reproduce the data from air quality monitoring stations located within the domain, especially during daytime hours (from 8 A.M. up to 8 P.M.).
- Data from cyclists could not be directly compared (point-by-point), therefore a comparison by using a spatial statistical method that identifies clusters of high and low values of pollutant concentrations is applied. A preliminary analysis indicates that, in general, similar locations of maxima and minima of concentration are obtained in both, experimental and numerical maps.
  - This methodology seems to be adequate to compute high resolution concentration maps for an entire city.





# Thank you for your attention!

esther.rivas@ciemat.es

