Evaluation of local and regional air quality forecasts for London

Amy Stidworthy, Mark Jackson, Kate Johnson, David Carruthers, Jenny Stocker

Harmo18, Bologna, October 2017

Environmental Software and Services

Motivation

- Air quality forecasting is an important application of pollution dispersion models
- *air*TEXT is a local air quality forecasting service that models local air pollution dispersion using CERC's ADMS-Urban model
- How does airTEXT compare with other available forecasts for London?

Overview of presentation

CERC

Datasets for Evaluation

- Three forecasting datasets have been evaluated during this exercise:
 - street-scale *air*TEXT forecast;
 - 'raw' CAMS forecast; and
 - 'adjusted' CAMS forecast
- Five months: February 2017 July 2017
- Measured data from the London Air Quality Network

Number of measurement sites used in the evaluation exercise, by pollutant and site type

Site type	NO ₂	03	PM ₁₀	PM _{2.5}
Roadside	29	8	32	10
Suburban, urban background & industrial	21	8	19	6
Total	60	16	51	16

CERC

The London airTEXT Service

CERC

The London airTEXT Service

CERC

CAMS Regional Air Quality Forecast

- Hourly 96-hour forecasts of pollutants including NO₂, NO, O₃, PM₁₀, and PM_{2.5} at 0.1° resolution on a domain covering all of Europe
- Regional-scale forecast derived from an ensemble of models that use varying degrees of data assimilation (in-situ and satellite)
- CAMS (adjusted) provides the "background" pollution levels for airTEXT

CAMS forecast for the UK displayed on the CERC website

Adjustments to CAMS Forecast for airTEXT

Pollutant	'adjusted' CAMS concentration = A ₀ + A ₁ x 'raw' CAMS concentration						
	A ₀ (μg/m³)	A ₁ (-)					
NO ₂	1.40	0.77					
03	0.22	0.89					
PM ₁₀	1.80	1.20					
PM _{2.5}	3.70	1.20					

- Model evaluation at rural monitoring sites for the south-east of England shows that the 'raw' CAMS ensemble model forecast includes some bias.
- Use regression analyses using historical datasets to calculate factors for linearly adjusting the 'raw' CAMS forecast to give an 'adjusted' CAMS dataset
- For south-east England,:
 - the 'raw' CAMS NO₂ and O₃ forecasts appear to be over-predicting by ~ 30% and ~ 12% respectively
 - the 'raw' CAMS particulate forecasts are under-predicting by ~ 17%.

CERC

Datasets for Evaluation

- Three forecasting datasets have been evaluated during this exercise:
 - street-scale *air*TEXT forecast;
 - 'raw' CAMS forecast; and
 - 'adjusted' CAMS forecast
- Five months: February 2017 July 2017
- Measured data from the London Air Quality Network

Number of measurement sites used in the evaluation exercise, by pollutant and site type

Site type	NO ₂	03	PM ₁₀	PM _{2.5}
Roadside	29	8	32	10
Suburban, urban background & industrial	21	8	19	6
Total	60	16	51	16

CERC

Evaluation Methodology

Model Evaluation Toolkit

- Originally developed by CERC under FP7 PASODOBLE
- Free tool, open source
- Uses Openair tools
- Download from http://www.cerc.co.uk/modelevaluationtoolkit
- Evaluates both concentration and alert accuracy

DELTA Tool

- Developed by JRC as part of the FAIRMODE initiative
- Download from <u>http://fairmode.jrc.ec.europa.eu/downloads.html</u>
- Forecast mode currently in development
- Accounts for observation uncertainty

Evaluation Results: Concentration (Toolkit)

Time series of daily concentration averaged over all monitoring sites (DAQI statistics)

Evaluation Results: Concentration (Toolkit)

400

300

200

100

airTEXT

 NO_2

airTEX

 O_3

50

modelled vs observed daily statistics for nonroadside sites only Pollutant **Statistic** Daily max 1-hour NO_2 03 Daily maximum of 8hour rolling average PM_{10} Daily average PM_{2.5} Daily average

Scatter plots of

Evaluation Results: Concentration (Toolkit)

Pollutant (daily statistic)	Sites	Average concentration				Model evaluation statistics								
		Obs. (µg/m³)	Modelled (µg/m³)		FAC2			NMSE			R			
			airTEXT	'raw' CAMS	ʻadjusted' CAMS	airTEXT	'raw' CAMS	ʻadjusted' CAMS	airTEXT	'raw' CAMS	ʻadjusted' CAMS	airTEXT	'raw' CAMS	ʻadjusted' CAMS
NO ₂ (max 1-hour)	non- road	56.3	<u>61.7</u>	39.6	31.9	<u>0.85</u>	0.78	0.65	<u>0.23</u>	0.46	0.74	<u>0.54</u>	0.43	0.43
	all	73.6	<u>77.3</u>	39.8	32.1	<u>0.87</u>	0.56	0.45	<u>0.20</u>	0.82	1.23	<u>0.63</u>	0.38	0.38
O ₃ (max 8- hour rolling)	non- road	62.4	58.1	75.0	<u>66.9</u>	<u>0.95</u>	0.93	<u>0.95</u>	0.08	0.08	<u>0.06</u>	0.69	<u>0.73</u>	<u>0.73</u>
	all	53.5	<u>54.1</u>	74.6	66.7	<u>0.92</u>	0.79	0.85	<u>0.09</u>	0.19	0.13	<u>0.69</u>	0.62	0.62
PM ₁₀ (average)	non- road	21.3	<u>19.3</u>	13.7	18.2	<u>0.92</u>	0.76	0.89	<u>0.19</u>	0.48	0.24	<u>0.63</u>	0.56	0.56
	all	22.8	<u>22.5</u>	13.7	18.3	<u>0.93</u>	0.71	0.89	<u>0.16</u>	0.52	0.24	<u>0.62</u>	0.59	0.59
PM _{2.5} (average)	non- road	13.9	<u>14.4</u>	9.3	14.9	<u>0.97</u>	0.83	0.96	<u>0.14</u>	0.40	<u>0.14</u>	<u>0.80</u>	<u>0.80</u>	<u>0.80</u>
	all	13.9	16.0	9.3	<u>14.9</u>	0.92	0.82	<u>0.93</u>	0.17	0.41	<u>0.15</u>	0.77	<u>0.80</u>	<u>0.80</u>

CERC

Evaluation Results: Alerts (DELTA)

DELTA Tool accounts for observation uncertainty

- 'conservative' approach: if accounting for measurement uncertainty results in the possibility of a threshold exceedance, then assume that an exceedance did occur
- 'cautious' approach: if there is the possibility that an exceedance did not occur, then assume that it did not occur

Number of observed, correct, false and missed PM_{10} moderate alerts for *air*TEXT and CAMS with ('Conservative' & 'Cautious') and without ('No uncertainty') accounting for measurement uncertainty; data for all sites presented.

CERC

Discussion

- No major air pollution episodes occurred during this period in the south-east of England
- In this evaluation, *air*TEXT performs better than the regional-scale CAMS forecasts for all pollutants considered
- NO₂: Main source in urban areas is traffic need to model roads at high resolution to capture steep gradients
- O₃: Solely a secondary pollutant, strongly influenced by local CAMS. Mixed picture generally *air*TEXT better, due to local titration (CAMS tends to overpredict), but *air*TEXT missed June episode caused by local ozone generation in very hot weather
- PM₁₀: Again regional component is significant. CAMS underestimates, but adjustment leads to good *air*TEXT prediction.
- PM_{2.5}: influenced both by long-range transport and local emissions sources. The 'raw' CAMS forecasts are lower than measured values, but the current 'adjusted' CAMS forecast is a slight over-prediction, which leads to a small over-prediction of *air*TEXT
- Alerts: one particulate concentration episode at the beginning of the evaluation period. CAMS missed the episode leading to an under-prediction by *air*TEXT, although the local forecast predicted some elevated PM₁₀ values

airTEXT Service Evolution: Expansion e.g. Riga

CERC

Ministry of Environmental Protection and Regional Development of the Republic of Latvia

Thank you for listening