WRF PBL schemes for turbulence parameterizations: representing dispersion processes in sub-kilometer horizontally non-homogeneous flows

Elena Tomasi, Lorenzo Giovannini, Pedro Jimenez, Branko Kosovic, Stefano Alessandrini, Enrico Ferrero, Marco Falocchi, Dino Zardi and Luca Delle Monache

Outline

- 1. Aims and Methodology
- 2. BTEX: the Bolzano Tracer experiment
- 3. The meteorological simulations with WRF
- 4. The dispersion simulations with SPRAYWEB
 - Turbulence parameterizations in the WRF-SPRAYWEB Interface
- 5. Results against measured tracer concentrations
- 6. Conclusions

Aims and Methodology

Compare the performance of **different turbulence parameterizations** over complex terrain with a WRF-SPRAYWEB modeling chain

BTEX: the Bolzano Tracer EXperiment

- 14th February 2017
- 2 releases of tracer gas7 am and 12:45 am
- 80 samples of ground concentration collected

BTEX: the Bolzano Tracer EXperiment

More details on BTEX: Poster H18-184

Meteorological simulations with WRF

- WRF v3.8.1, 3 nested domains, 30m vertical resolution up to 1km
- Innermost domain: 300 m horizontal resolution, obs nudging
- 6-hourly ECMWF HRES Operational Data, 9-km resolution

Meteorological simulations with WRF

- Mellor-Yamada Nakanishi Niino Planetary Boundary Layer scheme (MYNN, Nakanishi and Niino, 2004)
 - 1D scheme \rightarrow HP: horizontal homogeneity
 - 1.5-order scheme
 - prognostic equation for turbulent kinetic energy (TKE)
 - Closure constants

(A1, A2, B1, B2, C1) = (1.18, 0.665, 24.0, 15.0, 0.137)

From LES over flat terrain

MODIFICATION

(A1, A2, B1, B2, C1) = (2.135, 0.64, 35.94, 61, 0.167)

From Wind Tunnel data over an idealized valley Trini Castelli et al. (2001) and Trini Castelli et al. (1999)

Meteorological simulations with WRF

Turbulence parameterizations in the WS-Interface

Development and test of WRF-SPRAYWEB interface

From meteorological data to wind standard deviations and lagrangian time scales

1. Hanna (1982) parameterization

$$\sigma_{i} = f(L, u_{*}, w_{*}, H_{mix}, z, C_{i})$$
$$T_{li} = f(\sigma_{i}, L, H_{mix}, z, C_{i})$$

- 2. M-Y parameterization from TKE
- 3. M-Y parameterization from TKE with MODIFIED closure constants

$$\sigma_U = \sigma_V = \sqrt{(1 - \gamma)q^2}$$

$$\gamma = \frac{1}{3} - 2\frac{A_1}{B_1} \qquad \sigma_W = \sqrt{\gamma q^2}$$

$$q^2 = 2 TKE \qquad T_{li} = \frac{K_m}{\sigma_i^2}$$

Dispersion simulations with SPRAYWEB

Development and test of WRF-SPRAYWEB interface

From meteorological data to wind standard deviations and lagrangian time scales

Dispersion	WRF PBL	Dispersion	Turbulence
Simulation	scheme	model	Parameterization
1. SPW $_H$	Stnd MYNN	SPRAYWEB	Sim. Theory Hanna
2. SPW $_{TKE}$	Stnd MYNN	SPRAYWEB	TKE scomposition
3. SPW _{TKE_{mod}}	Mod MYNN	SPRAYWEB	TKE scomposition

Dispersion simulations with SPRAYWEB

SPRAYWEB setup

- from 7 LST (1st release) to 18 LST (5 h after the 2nd release)
- Incinerator: point source, 60 m a.g.l, constant tracer releases

Release	Hour	Duration	Temperature	Exit Velocity
	[LST]	[h]	[°C]	[m s ⁻¹]
1^{st}	7:00	1	140	7.9
2 ^{<i>nd</i>}	12:45	1.5	140	7.8

- ground concentration grid: 300-m horizontal and 20-m vertical res
- varying time step internally calculated, min time step 2 s, 100 particles are released at every time step

SPW_HANNA

STATISTICAL INDEXES

Modeled mean, Correlation, Fractional BIAS, Norm. mean square error

	meanOBS	meanMOD	Corr	FB	NMSE	f2	Acceptance criteria Hanna and Chang (2012)
SPW _H	899.57	892.9	0.85	-0.01	1.28	0.41	yes
SPW _{TKE}	899.57	440.86	0.73	-0.68	5.04	0.32	no
SPW _{TKEmod}	899.57	887.7	0.76	-0.01	2.23	0.36	yes

TAYLOR DIAGRAM

Q-QPLOTS

Conclusions

- 1. Overall results of modeled concentrations against measurements are satisfactory
- The Hanna parameterization shows best performance
 → Surface layer scales from WRF are reliable in this case study
- 3. The TKE parameterization is effective only if closure constants for complex terrain are used
- 4. Improvements of SPW_{TKEmod} can derive from both meteorological changes and dispersion parameterizations
 - → Both the wind mean field and the dispersion parameterization are affected by the closure constants

Future work

- Run SPW_{Hanna} with the updated meteorological field
- Compare modeled σ_i with observations from a SODAR over the incinerator roof
- A 3D PBL scheme is under development at NCAR

 -> non-homogeneity also on the horizontal plane

 A scheme is under development at NCAR
 A scheme is under development at NCAR
 A scheme is under development at NCAR
 - ightarrow provides dispersion coefficients on the 3 directions

THANK YOU!

References

Chang, J. C. and S. R. Hanna, 2004: Air quality model performance evaluation. *Meteorology and Atmospheric Physics*, 87 (1), 167–196.

Ferrero, E., S. Trini Castelli, and D. Anfossi, 2003: Turbulence fields for atmospheric dispersion models in horizontally non-homogeneous conditions. *Atmospheric Environment*, 37 (17), 2305 – 2315.

Hanna, S. R., 1982: Applications in Air Pollution Modeling, Springer Netherlands, 275–310.

Hanna, S. R. and J. Chang, 2012: Setting Acceptance Criteria for Air Quality Models, 479–484. Springer Netherlands, Dordrecht.

Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. *Reviews of Geophysics*, 20 (4), 851–875

Nakanishi, M. and H. Niino, 2004: An improved mellor–yamada level-3 model with condensation physics: Its design and verification. *Boundary-Layer Meteorology*, 112 (1), 1–31.

Skamarock W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang and J.G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note TN-475+STR, 125.

Tinarelli G., Anfossi D., Bider M., Ferrero E. and Trini Castelli S., 2000: A new high performance version of the Lagrangian particle dispersion *model* SPRAY, some case studies. Air Pollution Modelling and its Applications XIII, *Plenum Press, New York*, 23, 499-506.

Trini Castelli, S., E. Ferrero, and D. Anfossi, 2001: Turbulence closures in neutral boundary layer over complex terrain. *Boundary-Layer Meteorology*, 100 (3), 405–419.