

04 December 2017

© Crown copyright 2017 Dstl



# Analytical Modelling of Dispersion for Bayesian Source Term Estimation

Paul Westoby Andrew Webb



04 December 2017 © Crown copyright 2017 Dstl 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 October 2017, Bologna, Italy



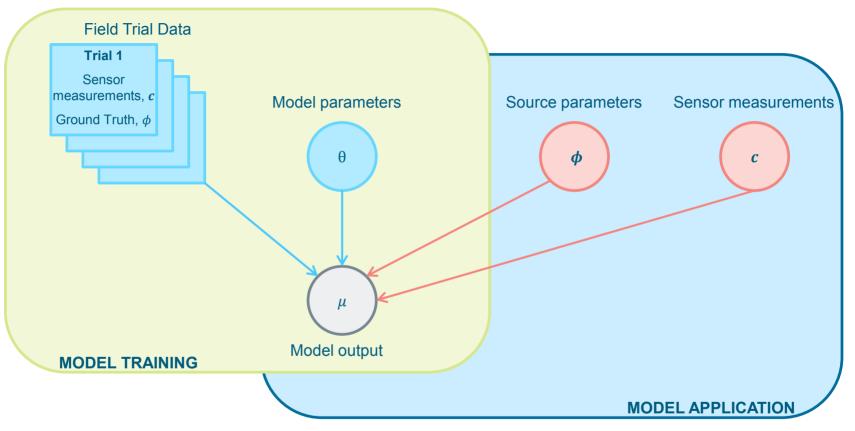
#### Introduction and outline

- Motivation
- Analytic model and features
- Optimising the model on field trial data
- Experimental procedure
- Results
  - JU2003
  - FFT07
- Summary and next steps



04 December 2017 © Crown copyright 2017 Dstl




#### **Motivation**

- Decision Support Tool
- Dispersion model is typically evaluated millions of times in Source Term Estimation (STE)
- Can a rapidly evaluated analytic model be used to minimise the use of a complex dispersion model?
- Our approach is to use field trial data to determine model parameters.



04 December 2017 © Crown copyright 2017 Dstl







(8) Ministry of Defend

#### The model

- Gaussian puff model used within an optimisation framework:
  - It is not steady state
  - The release is of finite duration
  - Reflections from the ground and boundary layer top are included
  - There are non-zero initial values for  $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$

$$\frac{\sigma_x}{\sigma_u} = \frac{\sigma_y}{\sigma_v} = \frac{\sigma_z}{\sigma_w} = \begin{cases} \alpha + t & t \le 2\tau \\ [(\alpha + 2\tau)(\alpha + t)]^{\frac{1}{2}} & t > 2\tau \end{cases}$$

 $\tau$  - Lagrangian interval time scale;  $\alpha$  - initial value for  $\sigma_x/\sigma_u$ ,  $\sigma_y/\sigma_v$  and  $\sigma_z/\sigma_w$ ;  $\sigma_u$ ,  $\sigma_v$  and  $\sigma_w$  - standard deviations of the turbulent velocity fluctuations in x, y and z directions. Common value,  $\sigma_{uvw}$ , assumed for  $\sigma_u$ ,  $\sigma_v$  and  $\sigma_w$ .

04 December 2017 © Crown copyright 2017 Dstl

# **Approach: Optimisation (training)**

 We define a cost function, *L*, that measures the difference between the predictions and the observations at a set of locations and times.

 $\mathcal{L} = \mathcal{L}(\boldsymbol{c}(t,\theta,\phi,\nu),\boldsymbol{m}(t),\{\boldsymbol{u}\}),$ 

 $c(t, \theta, \phi, v)$  - predictions at a set of sensor locations at time *t* for model parameters  $\theta$ ,  $\phi$  and v;

 $\boldsymbol{m}(t)$  - measured concentration at the sensors at time t

{**u**} - set of wind measurements.

#### **Parameters**

- $\phi$  the source term parameters
- $\boldsymbol{\theta}$  the dispersion model parameters
- $\nu$  meteorological parameters

Optimise with respect to  $\theta$  and  $\nu$  ( $\phi$  is known)



04 December 2017 © Crown copyright 2017 Dstl



# **Approach: Application to STE (test)**

- For an optimised model, the application to STE is by optimising *L*(*c*(*t*, θ, φ, ν), *m*(*t*), {*u*}), on data, with respect to:
  - $-\phi$ , the source term parameters,
  - $-\nu$ , the meteorological parameters
- $\theta$ , the model parameters, are assumed known
- The optimised values,  $\phi^*$ , are then compared with the true source term values.



04 December 2017 © Crown copyright 2017 Dstl



# **Experimental procedure (1)**

- Training
  - maximum likelihood and least squares cost function
- Evaluation
  - Fractional Bias (FB)
  - Normalised Mean Square Error (NMSE)
  - Factor of 2 (FAC2)

| Chang, J.C.<br>and Hanna,<br>S.R. (2004) | Assessment<br>measure | Rural | Urban |
|------------------------------------------|-----------------------|-------|-------|
|                                          | FB                    | <0.3  | <0.67 |
|                                          | NMSE                  | <3    | <6    |
|                                          | FAC2                  | >0.5  | >0.3  |



04 December 2017 © Crown copyright 2017 Dstl

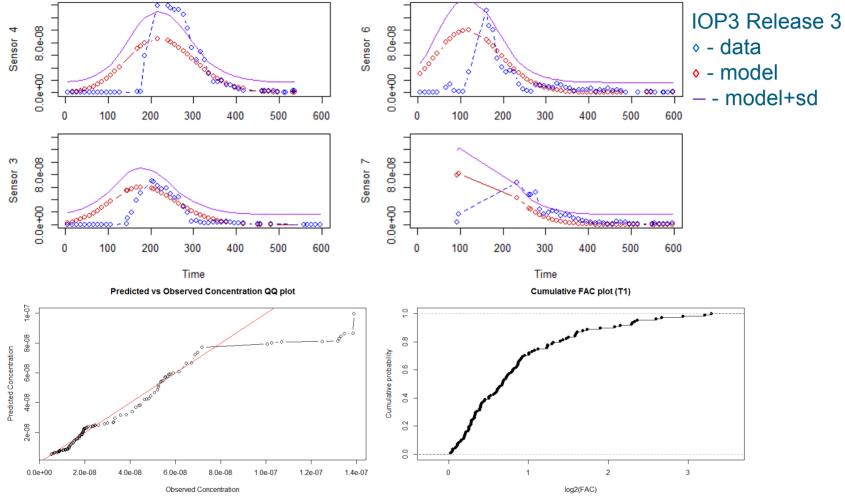


# **Experimental procedure (2)**

- Paired comparison
- Threshold schemes

T1 Both the observation and the prediction are greater than a threshold
T2 Either the observation or the prediction is greater than a threshold

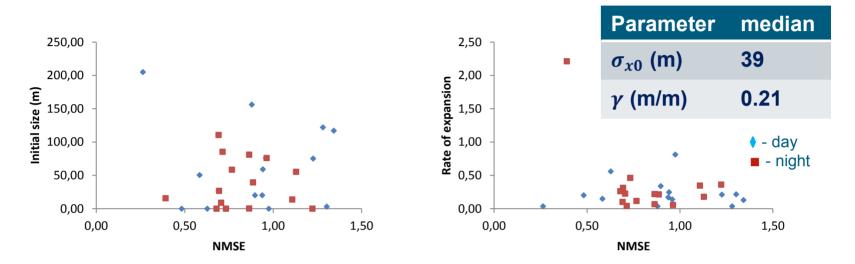
- From the final converged solution, we derive:
  - $\sigma_{x0} = \sigma_{y0} = \sigma_{z0} \triangleq \alpha \sigma_{uvw}$  the initial size of the puff (m)
  - $\gamma \triangleq \sigma_{uvw}/|u|$  the rate of expansion (m/m)


|       | $\sigma_{y0},\sigma_{z0}$ (m) | γ (m/m) | Hanna, S.              |
|-------|-------------------------------|---------|------------------------|
| Day   | 40                            | 0.25    | and Baja, E.<br>(2009) |
| Night | 40                            | 0.08    | ( )                    |



04 December 2017 © Crown copyright 2017 Dstl




#### **Results – JU2003**

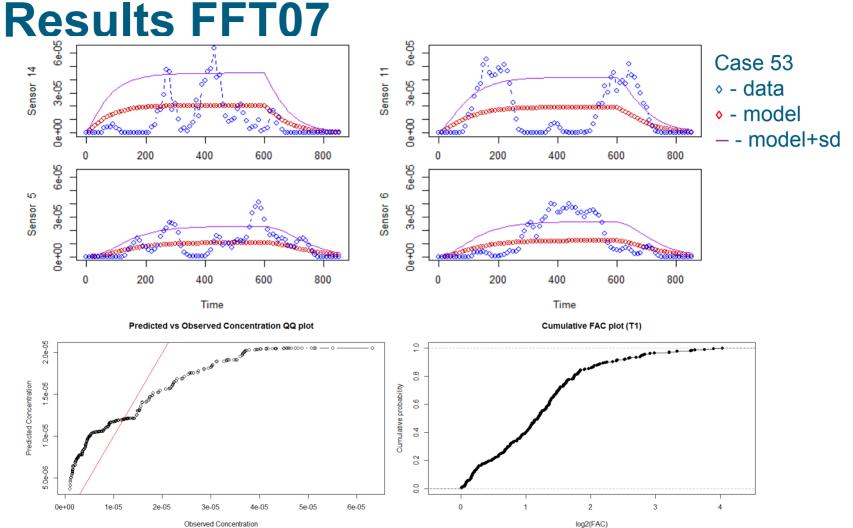




© Crown copyright 2017 Dstl

#### **Results – JU2003**



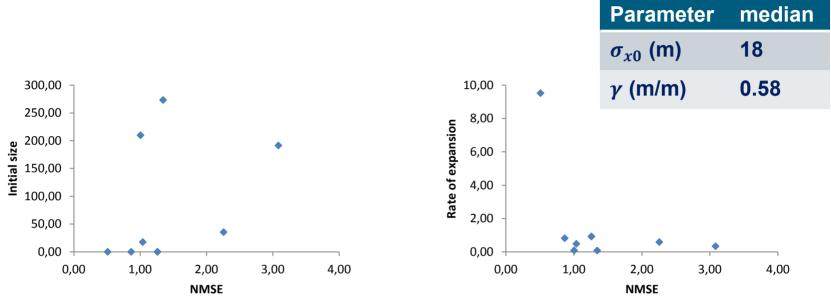

Scatter plots of initial size and rate of expansion against NMSE for JU2003 puff releases

|                          | T1    | T2    |
|--------------------------|-------|-------|
| JU2003 Puff Releases     | 29/29 | 22/29 |
| JU2003 Extended Releases | 22/24 | 12/24 |

Proportion of trials passing all assessment measure criteria



04 December 2017 © Crown copyright 2017 Dstl




Observed Concentration



04 December 2017 © Crown copyright 2017 Dstl

#### **Results FFT07**



Scatter plots of initial size and rate of expansion against NMSE for FFT07 extended releases

|                         | T1  | T2  |
|-------------------------|-----|-----|
| FFT07 Puff Releases     | 0/7 | 0/7 |
| FFT07 Extended Releases | 5/9 | 0/9 |

Proportion of trials passing all assessment measure criteria



04 December 2017 © Crown copyright 2017 Dstl



# Summary

- Analytic model developed for initial STE study
- Assessment on JU2003 and FFT field trial data puff and extended releases
- Maximum likelihood parameter estimation with fixed and optimised variance model
- Good performance on JU2003 (in terms of acceptance test), but not for FFT07 puff releases - lack of model flexibility for given ground truth
- Derived parameters (JU2003 puff releases) consistent with proposed model parameters in Hanna and Baja (2009)
- Next stage: assess model within a Bayesian STE procedure



04 December 2017 © Crown copyright 2017 Dstl

Thank you. Questions?

#### [arwebb2@dstl.gov.uk]



04 December 2017 © Crown copyright 2017 Dstl





04 December 2017

© Crown copyright 2017 Dstl

