

VALIDATION OF LATTICE BOLTZMANN METHOD IN COMPLEX URBAN ENVIRONMENT – HAMBURG & LA DEFENSE

Boris FECHNER, Patrick ARMAND & Christophe DUCHENNE

Agenda

1 Introduction

- 2 Validation Cases: Hamburg
- **3** Exploration Case: La Défense

Introduction to LBM Methods and PowerFLOW

Introduction to LBM Methods and PowerFLOW

- Turbulence in PowerFLOW:
 Eddy size
 WORK = O(R³)
 Only statically anisotropic eddies outside the Kolmogorov range are computed
- Passive scalar are used to represent small particle field:
 - Pollutant gases, pathogenic agent, radioactive agent, etc.
 - Closed or open environments
 - Up to 64 different scalars in the same simulation
 - PDE is solved for each scalar in addition of the flow field variables

Agenda

1 Introduction

2 Validation Cases: Hamburg

3 Exploration Case: La Défense

Hamburg Validation Cases

- Three different validation cases available from COST ES1006 (see next slides)
- All based on the same Simulation Model and Global Setup
- Surface Mesh:
 - Ground + buildings (4000 x 4000 m)
 - Triangular mesh, 9M elements
- Volume Mesh:
 - Cubic cells
 - Variable resolution (finest: 0.5m)
- Simulation Parameters:
 - Isothermal Simulation
 - Turbulence intensity: 10%
 - Time step: 7ms
 - Physical time simulated: 75min

Hamburg Case 1

Wind direction and intensity are constant in time Velocity profile reconstructed based on the Velocity 8.9 m/s at z=175m Neutral atmospheric stability

• Gas: SF6; Cd=1.5^e-05 m²/sec

Hamburg Case 3 Continuous

Wind direction and intensity are constant in time Velocity profile reconstructed based on the Velocity 6 m/s at z=49m Neutral atmospheric stability

٠

Hamburg Case 3 Puff

Wind direction and intensity are constant in time Velocity profile reconstructed based on the Velocity 6 m/s at z=49m Neutral atmospheric stability

٠

Exa

Validation Criteria

- CASE 1 and CASE 3 Continuous: time averaged gas concentration
- CASE 3 Puff: dosage (integral of the concentration over time)
- As mean of statistical correlation, we calculate the usual metrics: fractional bias (FB), geometric mean bias (MG), normalized mean square error (NMSE) and fraction of predictions within a factor of 2 of observations (FAC2).
- We used the reference acceptance criteria for atmospheric dispersion modelling of accidental releases in built environments defined by Hanna & Chang, which are:
 - | FB | ≤ 0.67
 - NMSE ≤ 6
 - FAC2 ≥ 0.3

Hamburg Case 1

(*) Typically, a 4m variation compared to the reference location

- The results for this case are disappointing as no Probe lies within the acceptance range (materialized by the 2 dotted lines)
- We conducted a sensibility test to Probe location; we also recorded data for a Model rotated by -2 and +2° (*)
 - These tests also gave almost no correlated Probe
- There are disputable reasons for this poor match:
 - Geometry delta between our WT Model and the actual city
 - Hypothesis of constant meteorological conditions during the experiment

Hamburg Case 3 Continuous

- 100 Concentration Avg [ppmV] - Simulation 8 2 • Location of the sensors -2° Reference locations of the Sensors \blacktriangle Location of the sensors +2° 100
- The results for this case are also disappointing as no Probe lies within the acceptance range
- We can note though a clear trend for the Simulation to over-predict the Experiment measurements
- The sensibility test to the Probe location show much improved results:
 - The FAC2 jumps to 0.53 for the +2° test
 - The FAC2 jumps to 0.50 for the -2° test

SExa

Hamburg Case 3 Puff

- The results for Puff case are better as the FAC2 is 0.25
- We note the same clear trend of overpredicting the Experiment measurements
- The sensibility test to the Probe location does not show any improvement:
 - FAC2 is 0.25 for the -2° test
 - FAC2 is 0.19 for the +2° test

Hamburg Case 3 Continuous – Comments

- In our validation exercise, we averaged the concentration over the whole length of the simulated gas release (60 minutes)
- In this slide, we look at sliding averages over 10 minutes

- Originally, our predictions are OK (FAC2 is 0.38 for 0-10 minutes) but very quickly, we overpredict the Experiment concentrations
- Is there a gas build-up in our Simulations, are we still under resolved?

Hamburg Case 3 Puff – Comments

- As the mean Dosage comparison showed, the Simulation overpredicts consistently the Experiments
- This is reinforced by the scatter plot of the 95 percentile Dosage for which the FAC2 is 0.75
- This could also denote a too coarse resolution so we refined the Grid around the city centre

Hamburg Case 3 Continuous – Increased Resolution

- Increasing the resolution has no impact on the averaged Concentration as all the Probes lie close to the slope 1 curve on the left scatter plot
- As a result, the correlation for the Continuous case remains poor, as shown by the right plot

Hamburg Case 3 Puff – Increased Resolution

- The concentration levels are reduced for the increased resolution case
- The FAC2 is 0.5, in the acceptance range defined by **Hanna & Chang**

Hamburg Case 3 Puff – Increased Resolution

- Shown left is the difference of the averaged Velocity fields for the original and the increased resolution Simulations
- We see here that the Velocity increases in the centre of the model
- Velocity decreases in the more open areas, around the densely built area

Hamburg Case 3 Puff – Increased Resolution

0 to 5 minutes Gas Averaged Concentration Fields

Hamburg Cases – Next Steps

- Finalizing the setup in terms of Resolution
 - Puff case is OK, but not the Continuous case
 - Results seem to improve though
 - Test finer resolution scheme(s)

- Investigate on better matching the boundary conditions and possibly the fidelity of our Simulation Model
- Test proof our future BP vs. another Experiment / City ?

Agenda

1 Introduction

- 2 Validation Cases: Hamburg
- **3** Exploration Case: La Défense

Gas S1 Concentration Volume Visualization

Velocity & S1 Concentration Histories in Z plane (Ground +2m)

Dangerous Areas Mapping

Probe Time Metrics

Probe	1	2	3	4	5	
Mean Dosage (mg/m^3)	376	802	\bigcirc	9489	2971	
Concentration Peak (mg/m^3)	1.6	2.0		85.6	12.2	
Arrival Time	1840	1740	330	1050	2410	
Peak Time	1960	3690	330	1050	3050	
Leaving Time	5220	5180	920	3420	3650	
Ascent Time	120	1950	0	0	640	
Descent Time	3260	1490	590	2370	600	
Duration Time	3380	3440	590	2370	1240	

Probe 3 Location – Health Risks Management – S1

SExa

Probe 3 Location – Health Risks Management – S2

SExa

Thank you for your attention

Gaz I : O Gaz 2 : O