# Ventilation of street canyons with various complexity of geometry

Vladimír Fuka\*, Zuzana Kluková\*,\*\*,Štěpán Nosek\*\*1

\*Department of Atmospheric Physics, Fac. of Mathematics and Physics Charles University, Prague \*\*Institute of Thermomechanics, Czech Academy of Sciences, Prague

Harmo 2019



## Outline

- 1 Introduction Motivation
- 2 Geometry description
- 3 Methods Experimental methods Numerical simulation
- 4 Results



#### Motivation

- Prediction of pollution levels within street canyons challenging.
- Simplified models often employ parametrizations of scalar fluxes from the streets and between streets.
- Parametrizations often derived from LES or DNS of idealized street networks.
- Often only simple boxes for the blocks of buildings and streets are considered.
- Here we investigate what is the influence of the level of complexity of the street network on the pollution fluxes and on the concentration levels within the canyons.



## Selected problem geometry

- Street network, periodically repeating.
- The average height of buildings in all street canyons is equal.
- All canopies the same  $\lambda_p$  and  $\lambda_f.$
- Pitched roofs and flat roofs
- Uniform height buildings and buildings of three different heights.





## Building types

- Reference height  $H = 25 \,\mathrm{m}$  real scale, 62.5 mm model scale
- Smaller buildings 0.8H and taller ones 1.2H
- Building width 0.6 H
- Canyon width 0.8 H
- street length  $L = 4.8H = 120 \,\mathrm{m}$  real scale





## Wind tunnel experiment

- So far only pitched roofs.
- Measurements of turbulent scalar fluxes
  - · simultaneous measurement of two velocity components by LAD
  - and concentrations by fast FID



Grid for the measurements.

Measurements published in Nosek, Kukačka, Jurčáková, Kellnerová, Jaňour, Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections, Env. Pollution 227 (2017) and Kluková, Nosek, Jaňour, Kukačka, Lateral transport of traffic pollutants in complex urban area, EPJ Web of Conferences 180, 02125 (2018).



## LES model ELMM

- Extended Large-eddy Microscale Model
- in-house code, open source https://bitbucket.org/LadaF/elmm/
- parallel: MPI, OpenMP
- FFT-based fast Poisson solver PoisFFT https://github.com/LadaF/PoisFFT



## Numerical methods

- Projection (fractional step) method
- 3rd order Runge-Kutta
- 2nd order central differences
- Direct forcing immersed boundary method for complex geometries
- Mixed Time Scale subgrid model



#### Simulation set-up



- Horizontal area covers 4x4 building blocks, periodic BCs
- Vertical domain extent 8H
- Periodic boundary conditions for flow variables
- Resolution  $\Delta z = H/20$ ,  $\Delta x = \Delta y = H/18.75$ , in total 240 × 480 × 160 cells
- Tests with grid nesting with higher resolution in the source canyon did not show large differences
- Expensive simulations with  $2 \times$  resolution (but short averaging time) underway, differences not large so-far



### Scalar sources

イロト イ理ト イヨト イ

• Line source at the bottom of the canyon.

- one grid cell width in LES

- a row of many needles injecting tracer gas in  $\mathsf{WT}$ 

• Two street canyons, containing the line source, were chosen for the analysis.

 $-\ensuremath{\,L}$  canyon step-down or equal at the corners

R canyon step-up at the corners
Four scalar sources considered.

- S1 long source as an approximation of an infinite oneleft canyon source

- S2 the R canyon source
- S3 the L canyon source
- S4 intersection source

• Only S1 used in the wind tunnel experiments.





## Validation

| metrics for $C^*$ | A1   | A2   |
|-------------------|------|------|
| FAC2              | 0.91 | 0.87 |
| FB                | 0.1  | 0.0  |
| MG                | 1.11 | 1.0  |
| VG                | 1.21 | 1.18 |

- Mean concentrations in measured points on the top and lateral canyon openings and at z = 0.6H.
- Only the long scalar source S1.
- Many points located in shear layers with large gradients.
- More in Nosek, Fuka, Kukačka, Kluková, Jaňour, *Street-canyon pollution with respect to urban-array complexity: The role of lateral and mean pollution fluxes*, Building and Env. 138 (2018) pitched roofs only.



## The street canyon flow field at z = 0.4H



- Larger mean vertical velocities for flat roofs.
- The flow pattern strongly deformed for variable heights.

matfy

Sac

イロト イロト イヨト イ

• Cross flow in the intersection for variable heights.

### The street canyon flow field - street centre



- Only uniform heights shown.
- For flat roofs a horizontal vortex across the whole street length.
- For pitched roofs the vortex is interrupted in the centre of the canyon.
- The vertical flow in the centre means horizontal convergence at the bottom.





- The source only within the street of interest.
- Maxima concentrated in the centre of the canyon, stronger for uniform heights.
- for A2 and B2 the right canon's scalar getting into neighbouring canyons.

matfy

Sac

イロト イポト イヨト イヨ

# Mean concentrations averaged over the canyon



| canyon | $\langle C^* \rangle$ |
|--------|-----------------------|
| A1     | 33.9                  |
| A2-L   | 36.0                  |
| A2-R   | 22.3                  |
| B1     | 48.1                  |
| B2-L   | 30.1                  |
| B2-R   | 28.0                  |

- Averaging volume not the same, eaves of the lowest building (pitched) and the top of the lowest building (flat).
- Large differences between cases.
- A2-R significantly lower than A1, but A2-L slightly higher.



イロト イポト イヨト イヨ

## Fluxes integrated across the top opening

|        |                                                    | > |
|--------|----------------------------------------------------|---|
| canyon | $\frac{\int c' w'  \mathrm{d} x  \mathrm{d} y}{Q}$ |   |
| A1     | 96%                                                |   |
| A2-L   | 97%                                                |   |
| A2-R   | 84%                                                |   |
| B1     | 63%                                                |   |
| B2-L   | 88%                                                |   |
| B2-R   | 68%                                                |   |



- Normalized by the source strength Q.
- The remaining part escapes the canyon through the lateral openings.
- Lower values correlated with higher concentrations.
- Air exchange rate for pitched roofs: Kluková, Nosek, Fuka, Capability of air exchange rate to predict ventilation of three-dimensional street canyons, EFM 2018, to appear in EPJ Web of Conferences

matfy

Sac

イロト イロト イヨト イ

## Fluxes integrated through all openings



- The long scalar source S1, normalized source within one street.
- The turbulent and the advective (mean) part separately.
- Now only for pitched roofs. Even more lateral transport for B2-R.
- With variable heights the L canyon receives  $\sim 0.10Q$  through the lateral openings while the R canyon exhausts  $\sim 0.15Q$ .
- For lateral openings the turbulent and the advective fluxes have the opposite sign and comparable magnitude.

matfvz

Sac

(日) (同) (三) (三)

## Conclusions

- The building shape and height configuration has a strong influence on pollution dispersion.
- All canopies had the same  $\lambda_p$  and  $\lambda_f.$
- Pitched roofs and geometry complexity increase the role of advective fluxes.
- Horizontal transport important and strongly depending on local geometry.
- Box models and similar dispersion model parametrizations might need to take the possible unresolved geometry complexity into account.
- Simulations in a 2x finer resolution are being run.

