DATA ASSIMILATION AT LOCAL SCALE TO IMPROVE CFD SIMULATIONS OF DISPERSION AROUND INDUSTRIAL SITES AND URBAN NEIGHBOURHOODS

C. Defforge¹, B. Carissimo¹, M. Bocquet¹, R. Bresson¹, and P. Armand²

¹CEREA, Joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France ²CEA, DAM, DIF, F-91297 Arpajon, France

HARMO19 - 6 june 2019

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

MICRO-METOROLOGICAL APPLICATIONS

Wind resource assessment

MICRO-METOROLOGICAL APPLICATIONS

Wind resource assessment

Dispersion modelling in built environment

Data assimilation for dispersion

EXAMPLES OF IN SITU MEASUREMENTS

Candidate site for wind farm

Met masts on crests

Urban area (Toulouse)

Meteo and pollutant observations

CONTEXT

CONTEXT

Data assimilation for dispersion

CONTEXT

Data assimilation for dispersion

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

C. Defforge (CEREA)

ITERATIVE ENSEMBLE KALMAN SMOOTHER - IEnKS¹

- Ensemble variational method appropriate for CFD simulations:
 - independent of atmospheric model
 - handle non-linear operators
 - easily parallelisable

¹Sakov et al. (2012); Bocquet and Sakov (2014) C. Defforge (CEREA) Data assimilation for dispersion

ITERATIVE ENSEMBLE KALMAN SMOOTHER - IEnKS¹

Ensemble variational method appropriate for CFD simulations:

- independent of atmospheric model
- handle non-linear operators
- easily parallelisable

▶ Variational method ↔ minimise cost function $\widetilde{\mathcal{J}} = \| \text{distance to background} \|_{\mathbf{B}^{-1}}^2 + \| \text{distance to observations} \|_{\mathbf{R}^{-1}}^2$

¹Sakov et al. (2012); Bocquet and Sakov (2014) C. Defforge (CEREA) Data assimilation for dispersion

ITERATIVE ENSEMBLE KALMAN SMOOTHER - IEnKS¹

Ensemble variational method appropriate for CFD simulations:

- independent of atmospheric model
- handle non-linear operators
- easily parallelisable

▶ Variational method ↔ minimise cost function $\widetilde{\mathcal{J}} = \| \text{distance to background} \|_{\mathbf{B}^{-1}}^2 + \| \text{distance to observations} \|_{\mathbf{R}^{-1}}^2$

 \blacktriangleright Ensemble-based method \leftrightarrow error statistics represented by an ensemble

- ► Goal: Find best combination of ensemble members (**w**^{*})
- Iteratively minimise cost function, in the ensemble space

¹Sakov et al. (2012); Bocquet and Sakov (2014)

C. Defforge (CEREA)

Data assimilation for dispersion

IEnKS ALGORITHM

 $\begin{array}{l} {\sf Ensemble} = {\sf background} + {\sf anomalies} \\ ({\sf BC}) \end{array}$

Initialisation: $\mathbf{w} = \mathbf{0}$

IEnKS ALGORITHM

- $\begin{array}{l} {\sf Ensemble} = {\sf background} + {\sf anomalies} \\ ({\sf BC}) \end{array}$
- Initialisation: $\mathbf{w} = \mathbf{0}$

Data assimilation for dispersion

Background err. covar. mat.

$$\mathbf{B}_{i,j} = c_{i,j}\sigma_i\sigma_j$$

= correlation × std

Background err. covar. mat.

$$\mathbf{B}_{i,j} = c_{i,j}\sigma_i\sigma_j$$

= correlation × std

Estimate $(c_{i,j})$ and (σ_i) from statistical analysis of climatology:

- Mesoscale simulations: Wind resource assessment (WRF)
- **Observations**: Dispersion modelling (above the canopy for all the trials)

Data assimilation for dispersion

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

C. Defforge (CEREA)

WIND RESOURCE ASSESSMENT¹

• Site with very complex topography $(4 \text{km} \times 4 \text{km} \times 2030 \text{m})$

WIND RESOURCE ASSESSMENT ¹

- Site with very complex topography ($4km \times 4km \times 2030m$)
- ▶ Field campaign (August-December 2007): 3 met masts

WIND RESOURCE ASSESSMENT ¹

- Site with very complex topography $(4 \text{km} \times 4 \text{km} \times 2030 \text{m})$
- ▶ Field campaign (August-December 2007): 3 met masts
- Hourly meso-scale simulations (WRF) over same region. Results clustered in 50 classes (WRAPP methodology)

DATA ASSIMILATION EXPERIMENT

- 50 representative situations
- Control vector = BC for 20 vert. profiles \times 21 levels \times (u,v) = 840 var.
- ▶ 10 observations (*u*, *v*, WS) from masts M and P. $\sigma_{\rm o} = 0.1 {\rm m}^2/{\rm s}^2$.
- 5 members
- Cross validation with 8 observations (u and v) from mast M80

RESULTS OF TWIN EXPERIMENTS

13 / 23

WIND POTENTIAL AND UNCERTAINTY

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

C. Defforge (CEREA)

DISPERSION IN BUILT ENVIRONMENT (MUST)

- ▶ Mock Urban Setting Test (MUST) September 2011 Utah Desert
- \blacktriangleright Idealized city constituted with containers (200m \times 200m)
- Field campaign: wind and concentration observations

DATA ASSIMILATION EXPERIMENT

- Case 2681829: neutral stability conditions
- Control vector = 1 vert. profile (22 levels) × (u, v, k) = 66 var.
- 14 observations (u, v) from 3 locations
- 5 members
- Cross validation with observations in the canopy:
 - ▶ 12 for *u*,
 - ▶ 12 for *v*,
 - ▶ 10 for *k*,
 - 40 for concentration

MAE AND RMSE FOR U, V, K, AND CONCENTRATION

COMPARISON WITH REFERENCE¹: Wind speed at 1m Background Analysis

	Ve	locity						
1.5	2	2.5	3	3.5	4	4.5	5	6.0e+00
	1	1		1	1	1		_

				Velocity Magnitude					
0.0e+00		1	1.5	2	2.5	3	3.5	Z	
				-			1	-	

¹Milliez and Carissimo (2007) C. Defforge (CEREA) Data as

Data assimilation for dispersion

19 / 23

COMPARISON WITH REFERENCE: Concentration at $1\mathrm{m}$

Analysis (departure from ref)

C. Defforge (CEREA)

Data assimilation for dispersion

Introduction

Methods

Iterative ensemble Kalman smoother Estimation of background ensemble

Wind resource assessment

Experimental setup Results of twin experiments Results with field observations

Dispersion in built environment (MUST)

Experimental setup Results with field observations

Conclusions and perspectives

CONCLUSIONS & PERSPECTIVES

- The IEnKS can be applied to local scale atmospheric simulations
- Application to 2 micro-meteorological applications: wind resource assessment + dispersion modelling
- The IEnKS has double action: improve exactitude (mean) + improve accuracy (variance) of BC and thus simulated values (wind, turbulence, concentration) within the domain.
- Control variables (BC) highly correlated ⇒ method efficient with small ensemble (N = 5)
- The IEnKS is easily adaptable to different models or study cases

CONCLUSIONS & PERSPECTIVES

- ► The IEnKS can be applied to local scale atmospheric simulations
- Application to 2 micro-meteorological applications: wind resource assessment + dispersion modelling
- The IEnKS has double action: improve exactitude (mean) + improve accuracy (variance) of BC and thus simulated values (wind, turbulence, concentration) within the domain.
- Control variables (BC) highly correlated ⇒ method efficient with small ensemble (N = 5)
- The IEnKS is easily adaptable to different models or study cases
- Perspectives :
 - MUST: assimilate observations of concentration

THANKS FOR YOUR ATTENTION REFERENCES

- Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman smoother. *Quart. J. Royal Meteor. Soc.*, **140**, 1521–1535.
- Defforge, C. L., B. Carissimo, M. Bocquet, P. Armand, and R. Bresson, 2018: Data assimilation at local scale to improve CFD simulations of atmospheric dispersion: application to 1D shallow-water equations and method comparisons. *Int. J. Environ. Pollut.*, **64**, 90–109.
- Defforge, C. L., B. Carissimo, M. Bocquet, R. Bresson, and P. Armand, 2019: Improving cfd atmospheric simulations at local scale for wind resource assessment using the iterative ensemble kalman smoother. J. Wind. Eng. Ind. Aerodyn., 189, 243–257.
- Milliez, M., and B. Carissimo, 2007: Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. *Boundary-Layer Meteor.*, **122**, 321–342.
- Sakov, P., D. S. Oliver, and L. Bertino, 2012: An Iterative EnKF for Strongly Nonlinear Systems. *Mon. Wea. Rev.*, **140**, 1988–2004.

ACKNOWLEDGEMENTS

We would like to thank Guillaume Angot and Jean-Philippe Argaud for their help in this study.