ANALYSIS OF THE EXCHANGE OF POLLUTANT AND MOMENTUM BETWEEN OUTDOOR AND INDOOR ENVIRONMENTS. THE CASE OF A CLASSROOM IN THE FRAMEWORK OF THE VIEPI PROJECT

Agnese Pini¹, Ilaria Musa¹, Annalisa Di Bernardino¹, Fabio Nardecchia², Paolo Monti¹, Giovanni Leuzzi¹, Armando Pelliccioni³, Monica Gherardi³, Giorgio Cattani⁴, Mariacarmela Cusano⁴, Alessandro Di Menno di Bucchianico⁴, Alessandra Gaeta⁴, Raffaella Gaddi⁴ and Gianluca Leone⁴

¹ DICEA, University of Rome "La Sapienza", Via Eudossiana 18, Rome, Italy.

² DAEEE, University of Rome "La Sapienza", Via Eudossiana 18, Rome, Italy.

³ INAIL-DIMEILA, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy.

⁴ ISPRA-Italian National Institute for Environmental Protection and Research, Via Vitaliano Brancati 48, Rome, Italy.

1 GOALS

- ✓ Investigation of the physical mechanism governing the exchanges between indoor and outdoor
- Evaluation of indoor airflow and particulate matter concentrations through field campaigns
- \checkmark Modelling of indoor fluid dynamics in different conditions
- \checkmark Investigation of the role played by the external boundary conditions
- ✓ Evaluation of indoor pollution by means of high-resolution computational fluid dynamics (CFD)

2 INTRODUCTION

In last decades, indoor air pollution has been recognised as a topic of primary importance in that population live mainly in indoor environments within which it is exposed to different kinds of pollutants, in particular fine and ultrafine particulate matter which affect human health.

Indoor concentration peaks and exposure of these substances depend on several factors, e.g. indoor and outdoor sources, particle size distributions, ventilation and outdoor fluid dynamics (Chen and Zhao, 2011). The last two factors, in particular, are fundamental in evaluating outdoor-indoor exchanges of pollutant and momentum, both in case of large openings, i.e. windows and doors, and through leakages.

Outdoor concentrations depend mainly by the source characteristics and building geometry (see e.g. Amicarelli et al., 2012; Leuzzi et al. 2012; Badas et al., 2017; Garau et al., 2018). The investigation of indoor particle dispersion usually presents difficulties related to the geometry. High-resolution Computational Fluid Dynamics (CFD) modelling is a useful tool for evaluating indoor particulate matter dispersion and indoor-outdoor interaction (Blocken, 2015). Such models require detailed input data to obtain physically based results and to validate the results as well.

In this work, which is part of the VIEPI (Integrated Evaluation of Indoor Particulate Exposure) project, numerical simulations of flow and particle

DICEA - DIPARTIMENTO DI INGEGNERIA CIVILE, Edile ed Ambientale

\checkmark Comparison between numerical results and experimental data	concentration fields within a confined real environment were carried out. Experimental data, i.e. concentrations of fine and ultrafine particles and fluid
collected during the field campaigns	dynamic quantities collected outdoor and indoor, were used both as input data and for comparison with the numerical results.

3 MATERIALS AND METHODS

RESULTS I/O EXCHANGE MECHANISM $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window for different time intervals for IOP#1: $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window for different time intervals for IOP#1: $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window for different time intervals for IOP#1: $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window for different time intervals for IOP#1: $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window for different time intervals for IOP#1: $A^{2}_{w} = P_{ind} - P_{out}$, (bottom panel) measured at the window closed Room pressure lower then outside The indoor concentration, C_{ind} , tends to increase probably due the inefferent time intervals for increase probably due

UNSTEADY FLUID DYNAMICS SIMULATION (UNST)

Maps of the velocity fields computed along the horizontal plane at 1.5 m above the floor in unsteady conditions at (a) 900 s, (b) 5400 s and (c) 7200 s.

Experimental data concerning the outdoor velocity field, i.e. wind velocity and direction measured by the ultrasonic anemometer, were used as input data.

Simulations reproduce the two hours in which the window and the door were opened during IOP#1 test.

The results show the strong flow inhomogeneity and highlight the need to have high frequency measured data to proper set boundary conditions and hence to obtain physically-based numerical results.

PARTICLE DISPERSION

Stick plot of the external wind (a) and comparison between measured (black line) and computed (red line) indoor concentrations for IOP#1 (b).

The computed concentrations compare well with the measured ones when the airflow enters through the window, i.e. from 0 s up to 1700 s. In contrast, when the direction of the external wind rotates, i.e. from 1800s up to 4000s, there is no airflow entering the window while air enters through the door. As no injection of pollutant was set at this opening, the computed concentration decreases faster than the measured one.

This fact confirms the need to model properly also airflow and pollutant concentration in the hallway.

(5) <u>CONCLUSIONS</u>	<u>REFERENCES</u>
Airflow and particulate matter concentration within an indoor environment have been investigated by means of a series of field campaigns and numerical simulations.	 - Amicarelli, A., P. Salizzoni, G. Leuzzi, P. Monti, L. Soulhac, FX. Cierco and F. Leboeuf, 2012: Sensitivity analysis of a concentration fluctuation model to dissipation rate estimates. Int. J. Environ. Pollut. 48, 164-173. - Badas, M.G., S. Ferrari, M. Garau and G. Querzoli, 2017: On the effect of gable roof on natural ventilation in two-dimensional urban canyons. J. Wind. Eng. Ind. Aerod., 162, 24–34.
The main objective was the analysis of indoor-outdoor exchanges of mass and momentum.	- Blocken, B., 2015: Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ., 91, 219-245.
The results show the need to have detailed indoor-outdoor boundary conditions as well as information on flow and concentration field also in correspondence of the other indoor environments, if any, constituting the building.	 Chen, C. and B. Zhao, 2011: Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ., 45, 275-288. Garau, M., M.G. Badas, S. Ferrari, et al., 2018: Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings. Boundary-Layer Meteorol., 167, 123–143. Leuzzi, G., A. Amicarelli, P. Monti and D.J. Thomson, 2012: A 3D Lagrangian dispersion model LAGFLUM and its validation with a wind tunnel experiment. Atmos. Environ.,
	54, 117-126.

HARMO 19 – 19th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 3-6 June 2019, Bruges, Belgium.