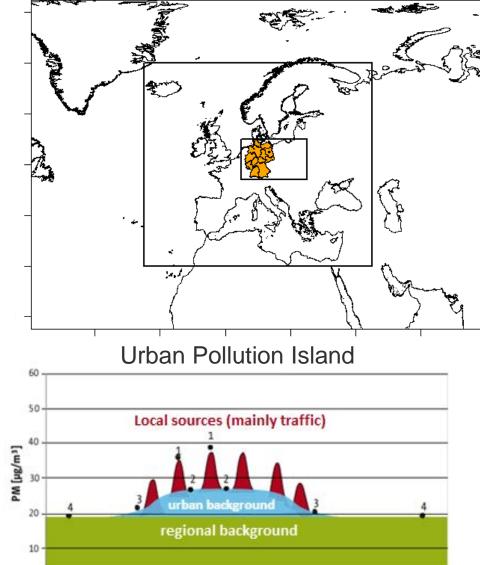


19th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 3-6 June 2019, Bruges, Belgium

SOURCE ATTRIBUTION OF PM FOR BERLIN USING LOTOS-EUROS

Joscha Pültz¹, Sabine Banzhaf¹, Markus Thürkow¹, Richard Kranenburg², Martijn Schaap^{1,2}

Tropospheric Environmental Research



¹Instute for Meteorology, Freie Universität Berlin, Berlin, Germany ²Climate, Air and sustainability department, TNO, Utrecht, The Netherlands

Contact: joscha.pueltz@met.fu-berlin.de

Introduction

- Particulate Matter (PM) in 2018
 - Air Quality Plan for Berlin
 - ➡ Strategy to avoid high PM10 concentrations (EU-Limits)
 - Goal: lowering the values
 What are the Origins?
 - Different contributions:
 - Local (Berlin/Brandenburg)
 - National (Germany)
 - Trans-Boundary
 - Strategy to avoid Exceedances have to be developed with European Neighbours
 - To resolve the contributions:
 - Observations (Berlin/Brandenburg) for 2018
 - Chemistry-Transport Model for 2018
 - Labeling approach (track the emissions)

Borrowed on the Berlin Air Quality Plan 2011

What are the Origins of observed PM in Berlin?

Observations (2018) PM10 & PM2.5

To get the different contributions of

- Local Sources (mainly Traffic)
- Urban Background

UB

SU

RURAL

- Suburban
- Rural

30

22

20

5

9

ഹ

0

PM10 in µg/m³

20

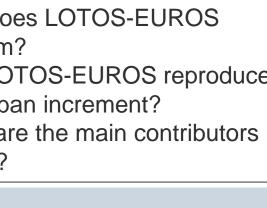
5

9

S

0

PM25 in $\mu g/m^3$


 \implies What are the typical gradients? Important local contribution Lenshow-Approach to PM10 ~ 10% **PM10** UBA (Umweltbundesamt) Network Traffic 22 of Stations in Berlin and **PM2.5**

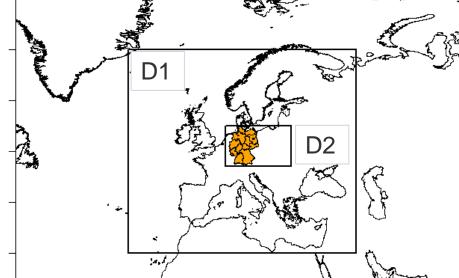
Brandenburg

- How does LOTOS-EUROS perform?
- Can LOTOS-EUROS reproduce this urban increment?
- What are the main contributors to this?

Berliner LUftguete MEssnetz (BLUME)

Brandenburg

Model Data (LOTOS-EUROS v2.1) for 2018

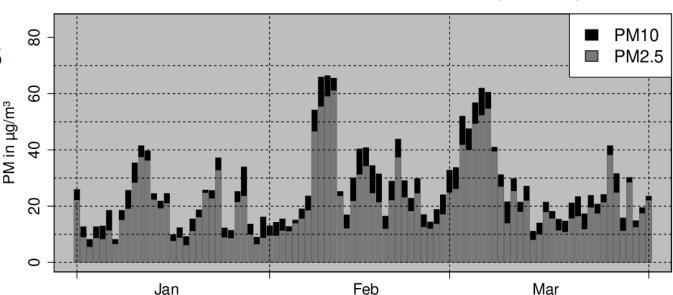

Manders et al., 2017, Kranenburg et al., 2013, Schaap et al., 2008

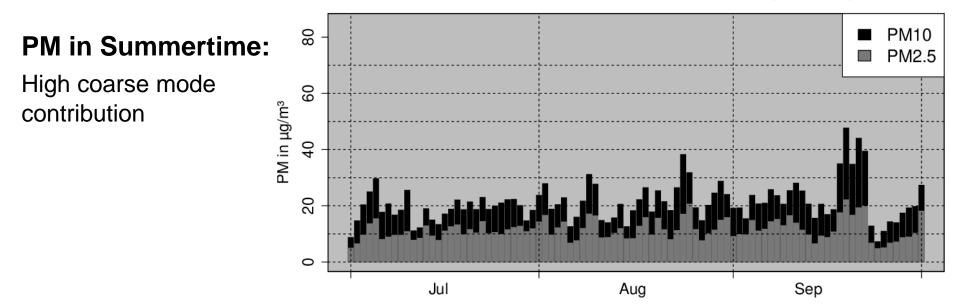
- **Meteorology** (ECMWF)
- **Emissions**
 - MACC III + Greta (for Germany)
 - Domestic Heating Emission time profiles based on heating demand
- Labelling approach:
 - \Rightarrow Emissions get a label
 - \Rightarrow track the contributions

COUNTRIES/ REGIONS	SECTORS
Berlin	Traffic
Brandenburg	Households
RestGermany	Industry/Energy
Poland	Agriculture
Czech Rep.	Rest
	Natural
	Boundary
Others	

D1 D2 $(\mathbf{z}_{\mathbf{z}})$

D1: 25 x 25 km²; D2: 7 x 7 km²

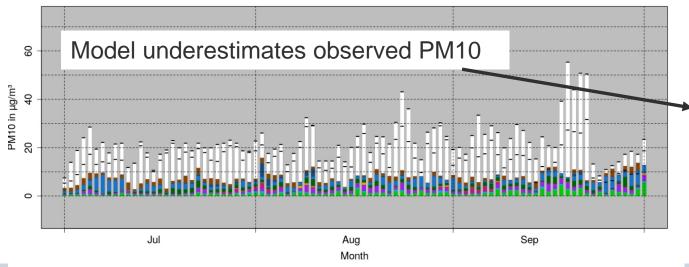



Evaluation Observations 2018

PM in Wintertime:

High fine mode contribution

Timeseries of PM10 & PM2.5 for UB (BENAN)


Timeseries of PM10 & PM2.5 for UB (BENAN)

Evaluation (Observations & Model)

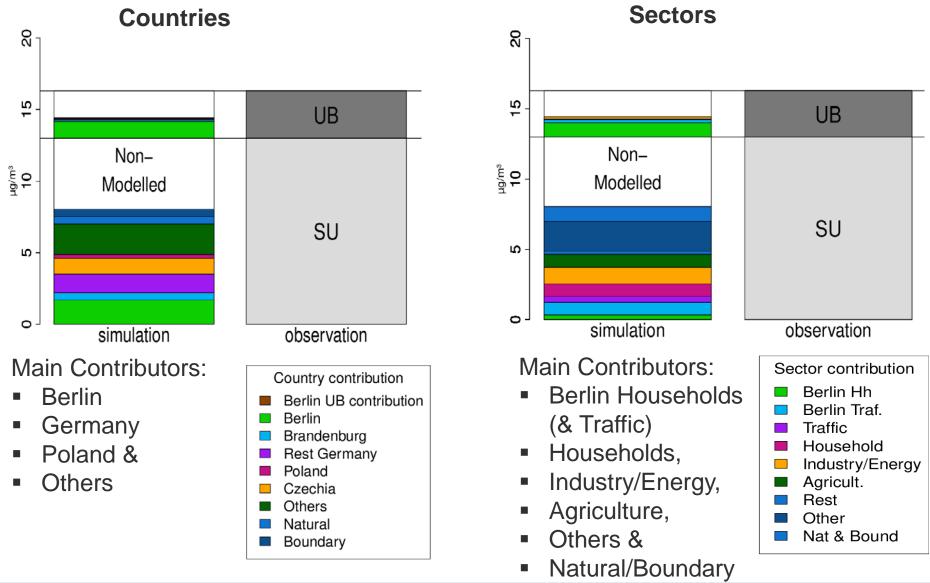
PM2.5 Winter Time series for Urban Background Explanation of the elled UB Berlin bar composition Berli idenburg est Germany 80 Poland Czechia Others PM25 in µg/m³ Natural Boundary 20 Jan Feb Mar

PM10 Summer

Simulation

Observations

February (PM2.5):


- Dry conditions
- Cold (below 0°C)
 - Enhanced demand of heating
- Calm weather
- Large contributions of Berlin, Rest-Germany and Poland
- \Rightarrow Accumulation of PM

LOTOS-EUROS resuspension-scheme is not connected to meteorological conditions

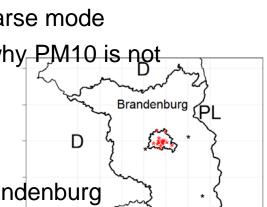
Results

Annual mean PM2.5 concentrations and labels (2018)

Conclusions

Evaluation

- PM2.5 is much better cought by the model than PM10
 - Model: Urban pollution Island is not caught for coarse mode
 - drought conditions in 2018 might be one reason why PM10 is not well reproduced by the model


Source Apportionment

- Countries during high concentration episodes:
 - High Berlin, National and Polish contibutions (low Brandenburg contribution)
- Sectors:
 - Residential combustion and agriculture (farm animals) are the most important during wintertime, followed by Industry/Energy and Traffic
 - Households and traffic are the most important local sources

Outlook

- Simulation with increased resolution
- What about the contributions east of Poland?
- Improving spatial time cycles (model vs. measurements)
- Longer time series (2010 2018)

D

