WRF-BEP/BEM simulation over Barcelona with local climate zones

I. Ribeiro, M. Falls, A. Zonato, G.Villalba, A.Martilli

HARMO'19, 06.06.2019 - Bruges

Quantify the impacts of greening the city on:

Air quality

Urban heat island, thermal comfort

Urban modelling adequate tools, high resolved, detailed input data

Urban schemes in WRF

Urban schemes compute the thermal and momentum interactions between the atmosphere and the city

Building Effect Parameterization (BEP):

a multi-layer layer scheme

BEP + Building Energy Model (**BEP+BEM**): 2nd generation BEP considering heating/cooling in buildings

Need additional urban parameters and high resolved input data/simulation

Urban parameters

Geometry

Buiding heigh and width Street width and orientation

Building energy related (BEM)

Target T and RH (A/C) A/C daily profile Thermal efficiency ratio windows/wall

Physic characteristics of surfaces (ground, walls and roofs)

Albedo Heat capacity Emissivity Thermal conductivity

Land use – by default

Corine Land Cover 2012

3 urban classes

continuous urban fabric discontinuous urban fabric commercial / industrial

Land use CLC + LCZ

CLC12 + Local Climate Zones

> 3 urban classes 11 urban classes

Local climate zones

- LCZ result from the World Urban Database Access Portal Tool (WUDAPT)
- Based on Urban Atlas, 3D ortophotos, images from Landsat 8,7 and Sentinel 2)
- It classifies urban and rural lands with similar thermal characteristics, form and function.

http://www.wudapt.org/

Simulation approaches

WRFv3.9 adapted according to Brousse et al. (2016) and Martilli et al. (2016) for the new land use information and classes (LCZ)

- Vertical layers: 45 layers up to ~16 km (1st 5th layers: 10m thickness)
- Noah Land Surface Model
- Bougeault-Lacarrère (Boulac) PBL scheme, designed for BEP

Simulations

- BULK: included in the Noah LSM. No distinction of urban land uses
- BEP: specific urban parameters (geometry and physic/thermal characteristics)
- **BEP+BEM:** considers energy balance of building heating and cooling

Observations

Servei Meteorològic de Catalunya

Correlation coefficient - R

 Urban schemes improved R regardless of the land use class

BULK BEP BEP+BEM

BEP with the largest R

SMHI

Errors: BIAS and RMSE

- BIAS >0 : RH, wind V
- BIAS <0 : T, wind U</p>

- Larger error values for BEP
- BEP+BEM with the lowest BIAS and RMSE in most of the LU classes, specially for wind

BIAS daily profile – Raval

- BEP: colder (-4°C) and more humid (+13%) in the night
- BEP+BEM: similar to BULK (T and RH), better during light time

Wind: similar to BEP or better – Improves during day light (V) or in the afternoon (U)

1000

500

0

1

2 3 4 5 6 7 8 9

PBLH

July 2016 (day)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

10 11 12 13 14

SMHI

PBLH

Bias	[model	- observations]	(m)
------	--------	-----------------	-----

BULK	74
BEP _{def}	289
BEP+BEM _{def}	326

Data: CFS reanalysis 0.500° (C) Wetterzentrale www.wetterzentrale.de

Most common synoptic condition in summer. *H* over Azores. *L* over Scandinavia.

Both urban schemes overpredict the PBLH, which may be related to a higher buoyancy production then BULK.

SMHI

PBLH

Bias [model – obs] (m)

BULK	987	
BEP	1411	
BEP+BEM	1451	

Sun,10JUL2016 12Z 500 hPa Geopot. (gpdm) und Bodendruck (hPa)

Data: CFS reanalysis 0.500° (C) Wetterzentrale www.wetterzentrale.de

H is over the Azores islands.

Anticyclone ridge over the IP – atmosphere highly stable above the PBL.

Low thermal system boosted by solar radiation in the IP - not strong enough to be expressed in altitude (overestimated by models).

PBLH

Thu,21JUL2016 12Z 500 hPa Geopot. (gpdm), Bodendruck (hPa)

Data: CFS reanalysis 0.500° (C) Wetterzentrale www.wetterzentrale.de

18-20/7: *L* over Atlantic invades southwards to IP provoking North Atlantic advection to W of IP, bringing saturated air.

On 21st, the *L* dissipates and the moisture air warms up leading to atmospheric unstable conditions. WRF underpredicted PBLH. Urban schemes with better performance due to their overprediction trend.

- BEP+BEM presents the best performance for RH, T and Wind
- Urban schemes cause problems on PBLH prediction?
- The use of LCZ provides more detailed information to the model city morphology and physic properties of surfaces (good database for urban climate and air quality simulation).
- Input data on urban parameters must be improved gridded instead of table
- There is room to increase the horizontal resolution

Thank you!

Isabel.ribeiro@smhi.se

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

