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Abstract: In this work we have performed new investigations applying our Lagrangian algorithm described by 

Alessandrini et al. (2013) to simulate the plume rise in a convective boundary layer, capped with a strong inversion 

layer. We tested our model with the results of a water tank experiment (Weil et al. 2002). For each case we compare 

the simulated and measured mean height, horizontal and vertical plume standard deviation and the entrapment, the 

fraction of the plume that remains captured above the inversion respect to the whole mass of the plume. The model is 

able to correctly reproduce the main characteristics of the plume. 
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INTRODUCTION 

The correct simulation of plume rise is of basic importance for a correct estimation of the transport and 

dispersion of airborne pollutants and for the evaluation of their ground level concentration. A buoyant plume 

rises because of its initial momentum and buoyancy. In the first stage one has also to account for the action 

of the buoyancy-generated turbulence. However, progressively the effect of ambient turbulence becomes 

predominant. The rising plume experiences a shear force at its perimeter, where momentum is transferred 

from the plume to the surrounding air, and ambient air is entrained into the plume. This phenomenon, called 

entrainment, is responsible for the plume diameter increase and for the decrease of both its mean velocity 

and the average air-plume temperature difference. In the Eulerian dispersion models, the calculation of the 

plume rise is based on the fluid dynamic equations, namely on the mass, momentum and energy 

conservation equations. Since a complete theory is not yet available, these equations generally assume that 

the rate at which ambient air is entrained into the plume is proportional to the mean local rise velocity. This 

assumption was generally used in semi-empirical formulations (Briggs, 1975) but more complex three-

dimensional expressions are inserted in the integral models. In Lagrangian Particle Models (LPM) plume 

rise can be dynamically computed, i.e. each particle, at each time step, can respond to local conditions: wind 

speed and direction, ambient stability and turbulence (both the self-generated and ambient ones). This allows 

obtaining a high degree of resolution.  In particular, with a reference to the present work, it allows 

simulating the interaction of a plume with a capping inversion layer in a "natural" way. In this paper the 

method proposed by Alessandrini et al. (2013) is considered. It makes use of two scalars transported by the 

particles. They represent the temperature and vertical velocity difference between the plume and the 

environment. The entrainment is properly simulated and the plume rise is calculated from the local property 

of the flow. In that paper, concerning controlled conditions, the algorithm was tested only in neutral and 

stable boundary layers both in water tank and ideal experiment showing good results. In the present work we 

have performed new investigations applying the algorithm in a convective boundary layer (CBL) capped 

with a strong inversion layer. We considered the laboratory water tank experiment carried out by Weil et al. 

(2002). The focus of the experiment is on highly buoyant plumes that loft near or become trapped in the 

CBL capping inversion and resist downward mixing. Such plumes can be defined by a dimensionless 

buoyancy flux, Fb* (which depends on the stack buoyancy flux, the mean wind speed, the convective 

velocity scale and the CBL depth) and the dimensionless down-wind distance X (which depends on the 

distance, the mean wind speed, the convective velocity scale and the CBL depth).  By comparing the 

simulated and measured plume rise characteristics as a function of Fb* and the dimensionless down-wind 

distance X, we verified that the plume rise model is able to fulfil the experiment results.  



THE PLUME RISE MODEL 

The Lagrangian plume rise module was introduced in the Lagrangian stochastic particle model SPRAY 

(Tinarelli et al., 2000, Alessandrini and Ferrero, 2009). Each particle carries two quantities that specify 

the difference between the temperature and the momentum of the plume air and the environment. To this 

aim we assign to any i-th emitted particle in the time interval the “temperature mass” mT, defined as 

follows: 
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where Tpinit is the initial plume temperature, Ta(Hs) is the environment air temperature at the stack height, 

A is the stack exit section and Np is the total number of particles released in the time interval t and wu the 

plume exit velocity. Note that mT does not have the dimension of a mass but can be considered a “mass” 

when the temperature difference is considered a density. Considering the domain divided in fixed regular 

cubic cells, the air-plume temperature difference for the generic cell, Δ𝑇𝑐 , is: 
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where M is the number of particles in the cell c and Vc is the cell volume. In order to take into account the 

momentum flux we define the momentum mass 𝑚𝑤𝑖
, which is assigned to each particle. At the beginning 

of the simulation we have: 
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whereWpinit
 is the stack exit vertical velocity of the plume.  Also in this case, 𝑚𝑤𝑖

 has not the dimension 

of a mass but it can be considered so whenWpinit
 is considered a density. Then the cell vertical velocity

wc t0( )  at the time t0 is computed as 
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The new temperature difference ΔTc(t1) at the time t1 (where t1= t0+Δt) is calculated by the equation:  

 

 DTc t1( ) = DTc t0( )+ G(zc)×wc(t0 )×Dt -0.0098wc(t0 )×Dt  (5) 

where zc is the cell height and G(zc) is the lapse rate of the ambient air at cell height zc. The second term 

on the right side updates the temperature difference between the cell and the ambient considering the 

vertical inhomogeneity of the atmosphere temperature. The third term on the right takes into account the 

adiabatic expansion due to the plume ascending motion. Clearly, in case of neutral temperature profile, 

these two terms delete each other. Equation 5 aims to simulate the variation in time of plume-ambient air 

temperature difference due to the ascending motion. 

Afterwards, the value of 𝑤𝑐 at the time t1 is computed for every cell using the following equation: 

 

 wc t1( ) = wc t0( ) +
DTc t0( )

Ta zc( ) + DTc t0( )
g Dt -
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where Ta zc( )  is the ambient air temperature at the same cell height zc, S the cell horizontal surface area, 

cD the drag coefficient, ra  and rp
 are the ambient air and plume density, respectively. The second term 

on the right represents the buoyancy vertical acceleration while the last term on the right represents the 

aerodynamic drag. Equation 6 simulates the plume vertical ascending velocity variation in time due to the 

buoyancy acceleration and the aerodynamic drag. Then, the “temperature difference and velocity masses” 

at the time t1, 𝑚𝑇𝑖(𝑡1) and 𝑚𝑤𝑖(𝑡1) are computed for each particle following the two equations: 
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This method was proposed by Chock and Winkler (1994 a,b) and applied for a different purpose. In fact, 

in their papers, the masses were representing the actual masses of different substances carried by the 

particles in a chemically reactive plume. In our algorithm they carry the information, for each particle, 

relative to the two scalars introduced, the difference between the plume and environment temperatures 

and the vertical momentum.  

 
Figure 1. Comparison between model results (lines) and measured data (circles) for Fb*=0.0 as a function of the 

dimensionless downwind distance. From left to right the plots refer to the dimensionless mean plume height and to 

the dimensionless crosswind and vertical concentration standard deviations, respectively 

 

 

THE CASE STUDY 

We considered the Weil et al. (2002) experiment, which reproduced, in a water tank, the dispersion of a 

plume emitted from an elevated source in a convective boundary layer with a strong inversion at the top. 

It is important to mention that in the experiment there was no mean flow (and, hence, no environment 

turbulence) and the mean wind, constant with the height, was simulated by towing a model stack along 

the tank centreplane. The experiments are characterized by four different values of the normalized stack 

buoyancy flux   
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where Fb is stack buoyancy flux, zi the mixing height, w* the convective velocity scale,   the density, T 

the temperature, r is the source radius, ws  the plume velocity at the source, and g the gravitational 

acceleration. ‘s’ stands for stack values and ‘a’ for ambient air values. In order to perform the simulation 

we reported the experiments to typical atmospheric conditions. The scaling factor for the lengths, velocity 

and buoyancy were based on the Froude number similarity: Lm = 5000Lv
,Vm = 200Vv

, Dm = 8Dv
; where 

‘m’ indicates the numerical model and ‘v’ the experiment. Furthermore, 
Dv =

ra - rs

ra

 and Dm =
Ts -Ta

Ts

. 

Using these scaling factors we calculated the values for the simulation parameters. In the simulations u 

was kept constant with height as was in the experiment. The potential temperature profiles were set 

constant from 0 to zi and increasing above zi up to the top of the domain with the value of the vertical 

gradient corresponding to that of the experiment. 

 

RESULTS 

We present the results of the simulation performed with cD=0.3, which we considered the best choice for 

this parameter. We compare the simulated and measured mean height, horizontal and vertical plume 

standard deviations and the entrapment, the fraction of the plume that remains captured above the 

inversion with respect to the whole mass of the plume. The Figures 1 – 4 indicate that the overall 

simulation results are good, even if there are some deviations between predictions and observations. The 

model is able to correctly reproduce the basic characteristics of the plume rise phenomenon in convective 

conditions. This is interesting because the emission conditions cover a large scale of buoyancies: from a 

neutral emission (no buoyancy, Fb*=0.0) to very high buoyancy (Fb*=0.4). We have also to mention that 
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the absence of environmental turbulence in the experiment limits somehow the accuracy of our 

simulations. For instance, the plots of dimensionless crosswind standard deviation versus X show a slight 

overestimation at the furthest distances for the first three Fb* values and a perfect agreement for the 

highest buoyancy.  

 

 
Figure 2. As in Figure 1 but for for Fb*=0.1 

 

 
Figure 3. As in Figure 1 but for for Fb*=0.2 

 

 
Figure 4. As in Figure 1 but for for Fb*=0.4 

 

 

Figure 5 shows the mean plume entrapment as a function of the dimensionless distance for the four 

buoyancy cases. The model predictions are better close to the source while the model slightly 

overestimates for X>3. Furthermore, for X>1 simulations results underestimates the measured data in the 

cases with Fb*=0.2 and Fb*=0.4. We add that the simulation with different cd perform almost in the same 

way in the case of Fb*=0 and that in the other cases the lower is the value of cd and the higher is the 

entrapment, as it can be expected.  
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Figure 5. Comparison of the simulated (lines) and measured (circles) entrapment. From left to right and from top to 

bottom: for Fb*=0.0, for Fb*=0.1, for Fb*=0.2, for Fb*=0.4 
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