#### MODITIC

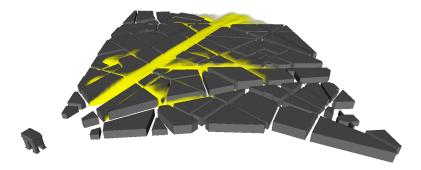
Modelling the dispersion of toxic industrial chemicals in urban environments

#### On the generation of inflow boundary conditions for dispersion simulations using Large Eddy Simulations.

Harmo'17 12.05.2016

A. N. Osnes, D. Eriksson, B. A. Pettersson Reif












Motivation: Correct inflow conditions are crucial to successful use of Large Eddy Simulations in dispersion simulations!





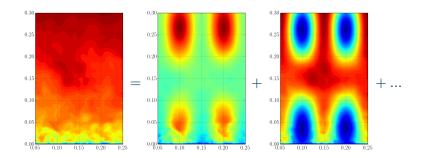
#### Overview

Three methods for generating inflow conditions

- I Proper orthogonal decomposition with Linear Stochastic Estimation
- II Synthethic turbulence
- III Roughness elements precursor simulation



#### Two sets of experimental data


<u>WALLTURB</u> [1] Laboratoire de Méchanique de Lille Flat-plate boundary layer Cross section:  $1 \times 2$  m  $U_{\infty} \approx 10$  m/s  $\operatorname{Re}_{\theta} \approx 20000$ 

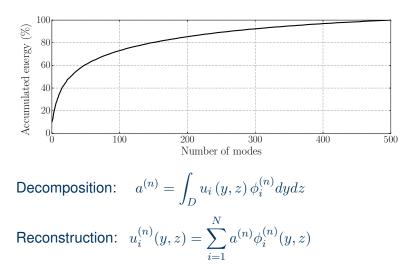
 $\label{eq:model} \begin{array}{l} \underline{\text{MODITIC}} \\ \text{University of Surrey} \\ \text{Roughness boundary layer} \\ \text{Cross section: } 3 \times 1.5 \text{ m} \\ U_{\infty} \approx 1 \text{ m/s} \\ \text{Re}_{\theta} \approx 6000 \end{array}$ 



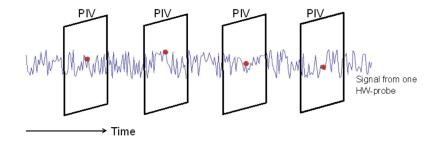


## Proper orthogonal decomposition is used to decompose the velocity field into a set of modes



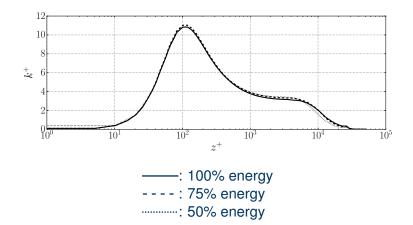

Modes are found by:

$$\int_{D} R_{ij}(y, y', z, z') \phi_{j}^{(n)}(y', z') \, dy' dz' = \lambda^{(n)} \phi_{i}^{(n)}(y, z)$$


$$R_{ij}\left(y,y',z,z'\right) = \left\langle u_i(y,z)u_j(y',z')\right\rangle$$

FFI Forsvarets forskningsinstitutt

## Reconstruction of velocity field can be done using a truncated set of modes




FFI Forsvarets forskningsinstitut High spatial and temporal resolution achieved using Linear Stochastic Estimation on PIV and Hotwire data





#### POD-LSE simulation results



Incompressible finite volume solver [2].



### Synthethic turbulence

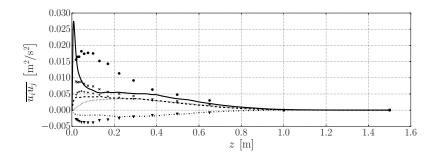
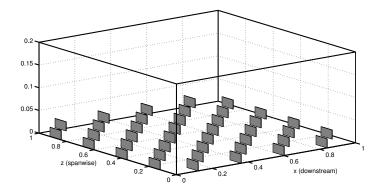


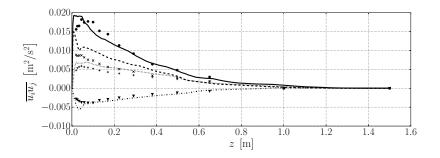



Image by: Svjo, distributed under a CC BY-SA 3.0 license.




#### Synthetic turbulence results






#### Roughness elements precursor simulation





# Turbulence statistics agree very well with experimental data using the roughness elements precursor simulation!



#### Conclusions

- The POD-LSE method works well for reproducing the flow on which it was based. It is not however easily applicable to arbitrary flows.
- The synthetic turbulence method did not give satisfactory results for these simulations.
- Simulating the complete wind-tunnel geometry, (in this case by including roughness elements) accurately reproduces the flow but is computationally expensive and work-intensive.



#### References

 Delville et al. 2011, The WALLTURB Joined Experiment to Assess the Large Scale Structures in a High Reynolds Number Turbulent Boundary Layer, Progress in Wall Turbulence: Understanding and Modeling.

[2] Cascade Technologies Inc. 2014, Users & Developers Manual, Jefferson Release Version 4.1.0

