

trinityconsultants.com

Roadside Hot-Spot Anaylsis in Urban Areas:

A Comparison Study of the Proposed Replacement of CALINE3 with AERMOD in U.S. Regulatory Guidance

Weiping Dai, Qiguo Jing, Tiffany Stefanescu, and Brian Holland

Harmo 17 Budapest, Hungary May 10, 2016

Context: Appendix W Revisions

- > Main U.S. ambient air quality modeling guideline
- > Proposed revisions pending (proposed July 2015)
- Included: replace CALINE3 with AERMOD for mobile source applications (particulate and CO hot-spot modeling)

What is CALINE3?

> Developed in late 1970's

- Steady-State
- P-G stability classes

> U.S. EPA preferred model for modeling mobile sources

- CALINE4, CAL3QHC, and CAL3QHCR
- Quantitative hot-spot analyses
- CO, PM, NO₂, SO₂ and lead

Why replace CALINE3?

- > No major updates since 1995
- > Simplistic/unrealistic boundary layer characterization
 - P-G stability classes
 - Insensitive to mixing height
- > Unable to model non-road sources (parking areas)
- > Lack of up-to-date met data
 - 1-minute wind data

Why AERMOD?

- > M-O similarity theory
- > Simple and complex terrain
- > Line and area source options
- > Latest meteorological data
- > Continuous update since 2005, ongoing
- > U.S. EPA: model should be listed as preferred when "a single model is found to perform better than others..."

Supporting Studies by U.S. EPA

> Caltrans 99

> Idaho Falls

 Barrier between the roadway emissions and receptors Highway 99 outside
 Sacramento

Heist et al. 2013, cited by U.S. EPA 2015

Urban Roadways

Not addressed in U.S. EPA replacement analysis
 Challenging environment for Gaussian models

Downtown Los Angeles

AERMOD Urban Road Considerations

- > Steady-state meteorology
- > Building effects limited to point sources
 - Only meteorological and land use data can account for urban environment

Field Study

- > Downtown LA
 - ✤ 3 days in June, 2008
- > Building Height
 - 🔹 5 187 m
 - Roadways
 - 3-lane one way
 - Met data
 - 7 am 7 pm
- PM2.5 data
 - Morning 7 am 9 am
 - Midday 11 am 1 pm
 - Afternoon 5 pm 7 pm
 - Traffic
 - Digital camera

On-Site Meteorological Data

- > On-site meteorological data (LA6 sonic anemometer)
 - Low wind speeds (0.66-1.18 m/s)
 - SSW prevailing wind
 - \bullet σ_w measured
 - M-O Length -35.9 to -0.9
- > Upper air data: San Diego, CA (~170 km)
 > AERMOD with airport weather data (LAX) also considered

PM_{2.5} Emission Rates

Vehicle PM_{2.5} emissions
 EMFAC 2014 data for LA

Fugitive PM_{2.5} emissions
 CARB's methodology 7.9

Model Performance

> Q-Q Plot for Downtown LA Field Study

- CALINE: vertical mixing is not enough? No σ_w input
- AERMOD onsite met is closet to 1:1 line
- RLINE similar to AERMOD
- AERMOD with airport met has worst performance

Meteorological Data Considerations

> Airport meteorological data widely used

- Low z_o + coastal location = high wind speed (0.66 vs. 1.30 m/s)
- Pre-processed data availability cited as cause for model switch
- > Real-world on-site data
 - Turbulence parameters needed?
 - AQ monitoring sites: can this be routinely collected in urban areas?

Summary

- > This data supports the recently proposed replacement of CALINE3 with AERMOD
- > Onsite meteorological data is essential for AERMOD when modeling urban road sources
- > For regulatory purposes, model validation and/or implementation guidance should consider real-world data

Acknowledgement

Professor Marko Princevac and his research team from University of California, Riverside

Questions

bholland@trinityconsultants.com

+1 972-661-8100

