

Analysis of simulation results issued by Lattice Boltzmann Method in complex urban environment

Patrick ARMAND & Fabrice BOISSERANC

May, 10th 2016

© Exa Corporation Confidential

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

Application to La Défense

- Simulation set-up
- Simulation analysis

Conclusions and next steps

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

Application to La Défense

- Simulation set-up
- Simulation analysis

Conclusions and next steps

Introduction to Exa

- Based in Burlington, MA, USA, Founded in 1991
- Employees: 28 ('01) → +300 ('16)
- Software publisher :
 - PowerFLOW \rightarrow CFD, Lattice Boltzmann based solver

 Collaboration with CEA started in september 2015

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

Introduction to LBM methods and PowerFLOW

Introduction to LBM methods and PowerFLOW

Turbulence in PowerFLOW

Dissipative eddies	Inertial range eddies	Anisotropic eddies
ℓ _d Approac Direct N	Eddy size Theory/Model hes: umerical Simulation (DN	Compute NS)
All significantly excited scales of motion are computed - WORK = O(R ³)		
Reynolds Averaged Navier-Stokes (RANS)		
All scales of motion are described by semi-empirical models		
Large Eddy Simulation (LES)		
Δ (grid size) All eddies larger than grid size are computed		
Very Large Eddy Simulation (VLES)		

Only statically anisotropic eddies outside the Kolmogorov range are computed

Passive scalar are used to represent small particle field:

Anisotropic eddies

- Pollutant gases, pathogenic agent, radioactive agent, etc.
- Closed or open environments

Dissipative eddies

- Up to 64 different scalars in the same simulation

Inertial range eddies

- PDE is solved for each scalar in addition of the flow field variables

- Introduction
 - Introduction to Exa

- Introduction to LBM methods and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

- Introduction
 - Introduction to Exa

- Introduction to LBM methods and PowerFLOW
- Application to an European city
 - Simulation set-up
 - Simulation analysis
- Application to La Défense
 - Simulation set-up
 - Simulation analysis
- Conclusions and next steps

Application to an European city → Simulation set-up

Application to an European city → Simulation set-up

Surface mesh

- Ground + buildings
- Triangular mesh, « stl » format
- 9M elements

Fluid mesh

- Cubic cells
- 66M elements
- Variable resolution
- Min resolution: 0.5m

- Simulation parameters
 - Characteristic velocity: 10m/s
 - Isothermal simulation
 - Turbulence intensity: 10%
 - TimeStep: 7ms
 - Results frequency acquisition: 10 sec
 - Flow simulation time: 75min

Simulation cost

- 6432 CPUh
- 20h on 308 processors

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

Averaged velocity field with streamlines: z=10m

- 30minutes averaged

- Low velocities in the city center due to an important concertation of buildings
- High velocities are found in areas with few buildings
- Local increase of the velocity magnitude by Venturi effect
- Wind hallways are present around the city center

Averaged Concentration, z=2m

10minutes averaged

- Gas is spreading in the direction of the wind
- Some gas is present upstream of the main flow direction

10⁶

300.000 10^{5} -30.000 10⁴ 3000 -10³ 300 100 -30

10 -

© Exa Corporation Confidential

Local analysis [east side of the source]

- 1. strong detachment of the flow behind the front building
- 2. Low pressure in the wake of the building
- adverse pressure gradient, which enables the gas to move upstream

© Exa Corporation Confidential

- Unsteady analysis
 - Gas concentration, 2m above ground

- Introduction
 - Introduction to Exa

- Introduction to LBM methods and PowerFLOW
- Application to an European city
 - Simulation set-up
 - Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

- Introduction
 - Introduction to Exa

- Introduction to LBM methods and PowerFLOW
- Application to an European city
 - Simulation set-up
 - Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

Application to La Défense → Simulation set-up

Application to La Défense → Simulation set-up

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

- Simulation set-up
- Simulation analysis
- Conclusions and next steps

- Averaged results
 - [35min-45min]
 - Gaz concentration, ground+2m
 - Average wind direction: 268°

- High concentration of gas is directing northward
- Region with gas upstream of the main flow direction

- Averaged results
 - [35min-45min]
 - *Gaz concentration, ground+2m*
 - Average wind direction: 268°

Delta Static pressure [Pa]

Acceleration by Venturi effect \rightarrow Brings gas in this direction

Recirculation, with low pressure

Pressure gradient which brings gas in the area

- Transient results:
 - Log of concentration, ground+2m

- Transient results:
 - Isosurfaces
 - C = 100 mg/m3

- Transient results:
 - Volume visualization

Introduction

- Introduction to Exa
- Introduction to LBM methods and PowerFLOW

Application to an European city

- Simulation set-up
- Simulation analysis

Application to La Défense

- Simulation set-up
- Simulation analysis

Conclusions and next steps

Conclusions and next steps

- Benefits of the PowerFLOW LBM transient solver
 - Native transient simulation with passive scalar capabilities :
 - Capture multi-species dispersion in time, in 1 simulation only
 - Capture fluctuations with a high level of resolution making it possible to observe very local specific phenomenon
 - Quick turnaround time regarding the level of precision
 - Very good scalability :
 - PowerFLOW can be paralyzed up to thousands of cores
 - Powerful tools to visualize and analyze the results

Conclusions and next steps

Next Steps...

- Validation with experimental results
- Simulate dispersion with unsteady gas conditions (gas puffs,...)
- Evaluate sanitary impacts of rejection on local population
- Evaluate concentration effects inside buildings :
 - HVAC systems
 - Rooms...
- Usage for building databases or response surfaces to qualify multiple scenarios

Questions?

Thank you for your attention !

 For any question or comment, please contact : *Guillaume Douarre*

Sales Account Manager EXA France – PARIS La Défense Direct : 0033 144 456 176 Mobile: 0033 678 557 141 gdouarre@exa.com

