DE LA RECHERCHE À L'INDUSTRIE

1920000

Improvement of atmospheric dispersion simulations in case of an accident or a malevolent action using data assimilation methods in CERES® CBRN-E 1900000 Robin LOCATELLI³, Vivien MALLET², and Patrick ARMAND¹ 1895000 ¹Atomic and alternative Energies Commission, France 1890000 ²INRIA, France ³STRATHOM, France 1885000 795000 800000 780000 785000 790000 Budapest (Hungary) | 9-12 May 2016 Harmo'17

www.cea.fr

Page 1/20

- Modelling of the dispersion at regional or local scale, possibly in built-up environments (e.g. 10 x 10 km domain at a resolution of 100 m or 0.5 x 0.5 km domain at a resolution of 5 m)
- CERES® CBRN-E modelling and decision-support system A major feature is the choice between different atmospheric dispersion models (MITHRA, SIRANERISK, PMSS...)
- There are several sources of uncertainty in the computations which cannot be ignored: meteorological and source term input data, dispersion and impact assessment models...
- There is a need to reduce these uncertainties for the first responders and decision-makers >>>> On idea is to take account of all available information by performing data assimilation!

Harmo'17 - Budapest (Hungary) | Robin LOCATELLI et al. | Improvement of dispersion simulations using data assimilation methods | Page 2/20

Choice of a data assimilation method and set up of the study

- Data assimilation Use of outputs from a dispersion model and atmospheric measurements
- Brief overview of the data assimilation methods
 - > Statistical methods: optimal interpolation, Kalman fiter, ensemble Kalman filter...
 - Variational methods: 3D-Var, 4D-Var...
- Differences in the computing time, quality of the optimized state, and system development
- Concentration field optimization without source term modification >>>> Optimal interpolation
- Optimal interpolation is governed by the Best Linear Unbiased Estimator (BEST) equation
- Main goals of this study:
 - > Implement the BEST algorithm in conjunction with an atmospheric dispersion model
 - > Test the capacity of the BEST algorithm for improving simulations
 - « Parallel experience » using observations in a simple case (simple topography and no building):
 - > Synthetic observations coming from a reference simulation
 - > Perturbations of meteorological conditions and source caracteristics
- Derivation of the reference simulation in the optimized state using the optimal interpolation
 - PMSS system (combination of PSWIFT and PSPRAY) but others models could be used...

BLUE matrix equation

- **B** : variance / covariance matrix of the errors on the prior
- ${\bf R}:$ variance / covariance matrix of the errors on the observations
- **H** : observation operator (relates the state vector **X** with the observations y_0)

BLUE matrix equation (cont'd)

$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{B}\mathbf{H}^{t}(\mathbf{H}\mathbf{B}\mathbf{H}^{t} + \mathbf{R})^{-1}(\mathbf{y}_{0} - \mathbf{H}\mathbf{X}^{b})$

How **y**o is built?

- > Localisation of the receptors: randow drawing in the (x,y) domain
- > Sampling of the simulation reference at the receptor localisations

How **R** is built?

- > **R** is supposed to be diagonal
- > Knowledge on the instrumental errors is needed to determine the variances

How **B** is built?

- > All sources of uncertainties between x^{\dagger} (true state) and x^{\flat} (prior state) must be accounted!
- > Uncertainties come from the source location, wind direction and speed, turbulence model...
- > A satisfactory **B** matrix is essential for the quality of the optimisation!
- > But, how to determine **B**? Analytical formulations? Others methods?...

DE LA RECHERCHE À L'INDUSTR

Analytical formulations for the **B** matrix

in the domain and the reference black point Correlation between the grid points

2 - Frydendall formula

0.70

0.65 0.60

0.55

0.50 0.45

0.40

0.35

0.30

0.25 0.20

0.15

0.10

0.05

0.00

800000

Dependant to the study case!

A

785000

790000

795000

- **B** is determined using an ensemble of perturbed simulations
- The pertirbated simulations are created by pertubing the meteorological conditions, the source characteristics, and the numerical choices
- Quantifying discrepancies between perturbed simulations is a way to sample the **B** matrix
- **B** is computed according to the following equations:

Several methods exist for specifying variances of error matrixes

1 - Desroziers method:

$$\begin{split} E[d_b^o(d_b^o)^t] &= R + HBH^t\\ E[d_b^a(d_b^o)^t] &= HBH^t\\ E[d_a^o(d_b^o)^t] &= R \end{split}$$

 $\sigma = \frac{\text{variances}_{\text{diagnosed}}}{\text{variances}_{\text{specified}}}$

E[]: mathematical expectation operator

$$\mathbf{d_b^o} = \mathbf{y_o} - \mathbf{H}\mathbf{x^b}$$

$$\mathbf{d_a^o} = \mathbf{y_o} - \mathbf{H}\mathbf{x^a}$$

$$\mathbf{d}^{a}_{b} = \mathbf{H}\mathbf{x}^{b} - \mathbf{H}\mathbf{x}^{a}$$

If $\sigma < 1$, variances need to be decreased If $\sigma > 1$, variances need to be increased

2 - χ^2 approach:

$$\chi^2 = (\mathbf{y_o} - \mathbf{H}\mathbf{x^b})^t \times \mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H^{t^{-1}}} \times (\mathbf{y_o} - \mathbf{H}\mathbf{x^b})$$

If **R** and **B** are correctly specified, the χ^2 value is in theory equal to the number of observations!

BLUE matrix equation (cont'd)

$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{B}\mathbf{H}^{t}(\mathbf{H}\mathbf{B}\mathbf{H}^{t} + \mathbf{R})^{-1}(\mathbf{y}_{0} - \mathbf{H}\mathbf{X}^{b})$

- How **B** is built?
 - > **B** is built as the average field of the generated ensemble

How **H** is built?

- H is the observation operator
 whose dimension is (N_{obs}, N_{pts})
- H_{i,j} = 1 if the ith observation is located on the jth point of the domain and H_{i i} = 0 otherwise

Prior concentration field is here >>>>

DE LA RECHERCHE À L'INDUSTR

Synoptic view of the method

Harmo'17 - Budapest (Hungary) | Robin LOCATELLI et al. | Improvement of dispersion simulations using data assimilation methods | Page 10/20

- Simulation the 12th of September 2011 between 10 am and 11 am
- Output frequency: 300 sec (5 minutes)
- Domain: 17 × 35 km Horizontal resolution: 100 meters
- Non-reactive tracer emitted by a source whose characteristics are:
 - T = 50°C ; w = 12 m/s ; H = 15 m ; Q = 1.2 10^5 Bq emitted

Assimilation process is tested with 10 to 50 receptors (here, 40)

10 « independant » receptors are also used for cross-validation (in black with the numbers)

Background concentrations are computed as the average concentrations of the ensemble

50 members

120 members

The distribution of analyzed concentrations fit much better...

The distribution of measured concentrations

DE LA RECHERCHE À L'INDUSTRIE

Spatial distribution of the optimized and reference concentrations at two different time steps

Harmo'17 - Budapest (Hungary) | Robin LOCATELLI et al. | Improvement of dispersion simulations using data assimilation methods | Page 15/20

DE LA RECHERCHE À L'INDUSTRI

Time series at the not assimilated stations

Harmo'17 - Budapest (Hungary) | Robin LOCATELLI et al. | Improvement of dispersion simulations using data assimilation methods | Page 16/20

DE LA RECHERCHE À L'INDUSTR

Sensitivity to the observations

Sensitivity to the number of members

Harmo'17 - Budapest (Hungary) | Robin LOCATELLI et al. | Improvement of dispersion simulations using data assimilation methods | Page 18/20

- Computing time is an essential criterion! (Figures in our simple test-case...)
 - > Creation of the ensemble of N simulations using N cores >> 3 min.
 - Reformatting of output files >> 5 min. for 60 members
 - > Optimal interpolation combined with the ensemble approach >> 2 min. (Short time!)
- Regarding data assimilation, the optimal interpolation method has several advantages:
 - Good quality of the optimized state
 - Computing time is fast
- One challenging issue is to find the best formulation for the **B** matrix
 - > Analytical formulations are not satisfactory enough
 - The ensemble approach is an objective way to compute the elements of B
- The system is able to derive optimized concentrations in agreement with the reference ones >>>> The optimal interpolation with the ensemble approach for B gives encouraging results!
- Much more work is needed!...
 - To test our algorithm in real cases with complex topography, buildings, complex meteorological situations...
 - To find the optimal configuration (number of observations, members in the ensemble, etc.)

Questions?

Corresponding author: Patrick ARMAND Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM Île-de-France – Bruyères-le-Châtel | DASE / SRCE Laboratoire Impact Radiologique et Chimique 91297 Arpajon CEDEX T. +33 (0)169 26 45 36 | F. +33 (0)1 69 26 70 65 E-mail: patrick.armand@cea.fr Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019