

#### EVALUATION AND DEVELOPMENT OF TOOLS TO QUANTIFY THE IMPACTS OF ROADSIDE VEGETATION BARRIERS ON NEAR-ROAD AIR QUALITY

Vlad Isakov<sup>1</sup>, Akula Venkatram<sup>2</sup>, Richard Baldauf<sup>3</sup>, Parik Deshmukh<sup>4</sup>, Max Zhang<sup>5</sup>

<sup>1</sup>U.S. EPA, ORD, National Exposure Research Laboratory,, Research Triangle Park, North Carolina, USA <sup>2</sup>University of California, Riverside, California, USA

<sup>3</sup>U.S. EPA, ORD, National Risk Management Research Laboratory, Research Triangle Park, North Carolina, USA <sup>4</sup>Jacobs Technologies, Research Triangle Park, North Carolina, USA

<sup>5</sup>Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA



17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary



### Why study roadside vegetation?

- Few "short-term" mitigation options for near-road air quality concerns
  - Emission reductions take long to implement (fleet turnover required)
  - Planning and zoning involved in rerouting and traffic reduction programs
  - ✓ Buffer/exclusion zones may not be feasible or effective
- Roadside vegetation may already be present
- Roadside vegetation has other positive benefits



#### **Research Methodology**

- EPA has initiated research to examine the role roadside vegetation may play in affecting near-road air pollution
  - ✓ Field studies
    - Chapel Hill, NC (vegetation)
    - San Francisco (vegetation)
  - ✓ Wind tunnel assessments
    - Site-specific configurations
  - ✓ Computational modeling
    - Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model with LES
    - Generalized vegetative scenarios





3

€PA

Agency

United States

**Environmental Protection** 



### **Chapel Hill Vegetation Barrier Study**

- Used CTAG model with LES to simulate the impacts of vegetation barriers barriers
  - ✓ Evaluated model results against the Chapel Hill field study data<sup>1</sup>
  - The results of model evaluation against the Chapel Hill data provided us with the confidence in CTAG with LES to simulate other scenario
- Next, we used the model to explore the effects of vegetation barriers on near-road particle concentrations using various common near-road configurations
- Modeling suggests two potentially viable design options as a potential mitigation option for near-road particulates:
  - ✓ A wide vegetation barrier with high Leaf Area Density
  - Vegetation-solid barrier combinations, i.e., planting trees next to a solid barrier



- On-road and near-road mobile and fixed monitoring with varying vegetation types
  - ✓ Bush/tree combinations with varying porosity





#### **San Francisco Vegetation Barrier Study**



Office of Research and Development National Exposure Research Laboratory

6

#### San Francisco Vegetation Barrier Study **Environmental Protection**



7

€PA

United States

## San Francisco Vegetation Barrier Study

Distributions of observed CO and UFP concentrations from all 1-second mobile measurements in Woodside across six locations behind the barrier



- Each distribution is based on a roughly ten thousand observations during the entire field campaign.
- Thus, the distributions represent a longer-term exposure over the range of varying meteorological conditions



#### **Modeling the Impact of Vegetation Barriers**

- We can quantify the effect of vegetation on reducing near road concentrations by estimating the height of a solid barrier that would resulted in the same reduction
- The primary effect of a solid barrier is to increase vertical dispersion of the pollutants emitted from the road
- A simple model of this effect adds the height of the barrier to the vertical dispersion

$$C = \sqrt{\frac{2}{\pi}} \frac{q}{W\sigma_w} \ln \left( 1 + \frac{W}{d + \frac{HU}{\sigma_w}} \right) \qquad H = \frac{\sigma_w}{U} \left( \frac{W}{p - 1} - d \right) \qquad p = \left( 1 + \frac{W}{d + \frac{H_0U}{\sigma_w}} \right)^R$$

where *q* is the emission rate per unit length of the road, *H* is the height of the barrier,  $\sigma_w$  is the standard deviation of the vertical velocity fluctuations, *U* is the near surface wind speed, *R* is the ratio of the concentration behind the vegetative barrier to the concentration in the open section, and  $H_0=2$  m corresponds to vehicle induced turbulence in the open section



#### **Effect of Vegetative Barriers on Concentrations**

| Stop<br>Number | Height of<br>Vegetation (m) | Description                                                                                      | Reduction<br><i>R</i> | Equivalent Barrier<br>Height (m) |
|----------------|-----------------------------|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|
| 1              | 0                           | Clear                                                                                            | 1                     | 2.0                              |
| 2              | 3-4                         | vegetation buffer ~6-7m with approx. 75% coverage                                                | 0.77                  | 3.5                              |
| 3              | 3-4                         | Wide gap (>4m) with highly porous mix of trees and thin bushes (~6-7m with approx. 50% coverage) | 1                     | 2.0                              |
| 4              | 3-4                         | vegetation buffer ~6-7m with approx. 90% coverage                                                | 0.73                  | 3.9                              |
| 5              | 3-4                         | trees ~10m, thick vegetation buffer ~7m,<br>and 1m wide gap with little vegetation               | 0.85                  | 2.8                              |
| 6              | 3-4                         | trees 10-12m, vegetation buffer ~7m with approx. 90% coverage                                    | 0.71                  | 4.1                              |

*R* refers to the mean of the reductions of the four species (CO, NO<sub>2</sub>, BC, UFP) at each of the stops



#### **Summary – Vegetation Barriers**

- Research shows the ability for roadside vegetation to reduce downwind pollutant concentrations near roads
- Design considerations are very important
- Vegetation should be appropriate for the location of use
- Best practice guidance and case studies needed to fully evaluate potential effectiveness of roadside vegetation and avoid unintended consequences
- Models will be important in designing and evaluating vegetative barriers
  - $\checkmark$  Simple model that adds the height of the barrier to the vertical dispersion
  - San Francisco study results show that computed heights are consistent with the heights of the vegetation
  - ✓ This suggests that it might be possible to estimate the equivalent height of a barrier using the actual height of the vegetative barrier and its porosity



#### **Summary – Vegetation Barriers**



- Areas desired for reduced concentrations should avoid gaps and edge effects
  - Vegetation barrier should provide coverage from the ground to the top of canopy
  - ✓ Barrier thickness should be adequate for complete coverage so gaps are avoided
- Pine/coniferous trees and thick bushes may be a good choice
  - ✓ No seasonal effects
  - ✓ Complex, rough, waxy surfaces

Office of Research and Development National Exposure Research Laboratory



#### **Summary – Vegetation Barriers**



- Pollutants can meander around edges or through gaps
- Barrier thickness should be adequate for complete coverage to avoid gaps
  - ✓ No spaces between or under trees
  - ✓ No gaps from dead or dying vegetation; maintenance important







#### **Summary - Vegetation Barriers**

# Combination of noise and vegetative barriers may provide most benefit

- Increase potential for pollutant dispersion and removal
- May be solid barrier with vegetation behind and/or in front
- Use of climbing vegetation and hedges with solid barrier may also provide additional benefits
  - ✓ Field study results mixed
  - Existing Vegetation on solid wall should extend enough to allow air to flow through



