

maîtriser le risque | pour un développement durable |

FAIRMODE Forum for air quality modelling in Europe

Evaluation of a Monte Carlo-based validation technique for data assimilated air quality assessments

Bino Maiheu⁽¹⁾, Laure Malherbe⁽²⁾, Ana I. Miranda⁽³⁾, Alexandra Monteiro⁽³⁾, Claudio Carnevale⁽⁴⁾ and **Stijn Janssen⁽¹⁾**

¹Flemish Institute for Technological Research (VITO), Belgium
 ²INERIS, France
 ³CESAM, Department of Environment and Planning, University of Aveiro, Portugal
 ⁴Department of Mechanical Engineering, University of Brescia, Italy

Outline

- » Validation of data-assimilated models
- » Proposed Monte Carlo methodology
- » 3 independent evaluations (INERIS, UAVR, VITO)
- » Conclusions

Validation of data assimilated models

- » AQD suggests integrated use of modelling & measurements for assessment
- » Wide range of techniques : online vs. offline, kriging, optimal interpolation, 3DVar, 4DVar, etc..
- » Validation usually :
 - » Leave one out & compare : criticized as not independent enough
 - » Leave n out & compare : how to perform selection of subset ?
- » Idea ! use **Monte Carlo** technique to leave n out

Proposed Monte Carlo methodology

- » Claudio Carnevale (Uni. Brescia):
- » Select 20% of the stations for validation
- » Do it until every stations
 is selected at least once
- » For most of the station you have more than one modelled time series
- Take the worst case (based on RMSE) for the final evaluation

Monte Carlo distribution

» Depending on chance some stations are selected 1 times, some > 10 times

- » Preliminary consideration:
 - » How sensitive are results to n_{min} = 1? Alternatives?
 - » Which time series to select final validation? Worst case?

Methodology implementation/tests

- » 3 independent tests:
 - » CHIMERE + Kriging (INERIS, L. Malherbe)
 - » EURAD + bias correction (Uni. Aveiro, A. Monteiro)
 - » RIO detrended kriging (VITO, B. Maiheu)

pour un développement durable

maîtriser le risque

Application : CHIMERE

The kriging is done for each hour (input data: hourly values) or each day (input data: average daily values).

It is implemented with R: RGeostats (Renard, 2010) and gstat (Pebesma, 2004) packages.

01/06/2016 © 2014, VITO NV FAIRMODE Forum for air quality modelling in Europe

maîtriser le risque pour un développement durable

Application : CHIMERE + Kriging

» The methodology has been tested for:

- » the French domain,
- » PM₁₀ ,
- » the whole year **2012**, on an hourly basis.
- » Input data:
 - » hourly time series of PM₁₀ concentrations measured at rural and suburban or urban background stations in France and surrounding countries (source: French national AQ database and Airbase v8)
 - » hourly time series simulated by CHIMERE CTM with a spatial resolution of approximately 4km
- » Monte-Carlo parameters:
 - **20% of stations removed for validation** at each random selection (function *sample* of R)
 - » Number *n* of random selections: n = 200, n = 300, and n = 500
 - » Selection of Monte Carlo member based on Max, P90, P50 (RMSE based)

maîtriser le risque pour un développement durable

Validation comparison

Application : UAVR

- » A bias correction data fusion technique
 - STEP 1. RAT04

a multiplicative ratio correction with 4 days (for each station)

$$C^{corrected}(h, day) = \frac{\sum_{ndays} C^{obs}(h, day)}{\sum_{ndays} C^{model}(h, day)} \times C^{model}(h, day)$$

STEP 2. **Spatial** approach Calculate the RAT04 average factor (per hour) and apply it to all grid cells

Case study : modeling setup

- » 39 stations in Portugal
- » Model : EURAD, 5x5 km² resolution
- » Year : 2005
- » O₃

01/06/2016 © 2014, VITO NV FAIRMODE Forum for air quality modelling in Europe

Results UAVR

BEFORE RAT04

AFTER RAT04 and Monte Carlo approach

01/06/2016 © 2014, VITO NV Forum for air quality modelling in Europe

FAIRMODE

The RIO model in 1 slide

- » Detrended Kriging interpolation model
- » Spatial trend captured by trendfunctions expressed vs. land use regression parameter β (CORINE).
 - » per hour of the day, week/weekend

» Operational mapping model in Belgium (IRCELINE) & Netherlands (RIVM)

01/06/2016 © 2014, VITO NV FAIRMODE Forum for air quality modelling in Europe

RIO Monte Carlo Validation RMSE – rural vs. n_min

vision on technology

01/06/2016 © 2014, VITO NV Forum for air quality modelling in Europe

FAIRMODE

14

Comparison with LOO

» PM10 daily averages 2009

01/06/2016 © 2014, VITO NV Forum for air quality modelling in Europe

FAIRMODE

15

General conclusions

- » Rather significant effort to implement the Monte Carlo approach
- » Still some points to clear out:
 - » Is the selection of the worst RMSE the best way?
 - » $n_{min} = 1 \rightarrow$ introduces randomness in the validation (especially when selecting the worst RMSE).
 - » Checks needed for different pollutants, different situations
- » Leaving-one-out is much easier to implement and seems to give similar results
- » What about validation of more complex data assimilation schemes (Ens. Kalman filter, 4DVAR...)

RIO Monte Carlo Validation RMSE – urban vs. n_min

01/06/2016 © 2014. VITO NV FAIRMODE Forum for air quality modelling in Europe

17

Methodology output

INERIS

maîtriser le risque pour un développement durable

Date	Obs	СТМ	CV_LOO	CV_Nfold	MC_P50	MC_P90	MC_max
2012010101	15	7.6	20.0	24.0	20.0	27.1	33.1
2012010101	12	7.9	16.0	23.2	18.8	20.8	22.5
2013010100							

Obs	Measured value	
СТМ	CHIMERE (interpolation at the station)	
CV_LOO	Leave-one-out cross-validation	
CV_Nfold	5-fold cross-validation	
MC_P50	Monte-Carlo validation, estimated value corresponding to the median square error	added for comparison
MC_P90	Monte-Carlo validation, estimated value corresponding to the 90th percentile of the square error	added for comparison
MC_max	Monte-Carlo validation, estimated value with maximum square error (worst case)	

Conclusions INERIS

- » No significant difference according to the number of subset selections (n=200, n=300, n=500)
- In the present tests, performance criteria were satisfied. However, could the « worst case » be too penalizing? Consider a high percentile of the error instead of the maximum?
- » The implementation requires attention but does not pose any particular problem
- The added value of the Monte-Carlo approach in relation to the usual leave-one-out or n-fold cross-validation will be further examined.

Conclusions UAVR

- » Very exhaustive methodology (mainly when the data fusion technique do not bring significant improvements)
- » Only operational/automated is feasible
- » A group of Matlab/Python programs was developed by UAVR and can be available for FAIRMODE community
- » Maximum RMSE per station or per iteration (re-analysis) should be reviewed
- » Results still need a deep analysis: too "fresh"!!

Conclusions VITO

- » Monte Carlo method seems to be quite robust for RIO w.r.t. leaving-one-out (at least for PM₁₀)... at first sight.
 - » Clustering of stations in urban area's
 - » PM_{10} more regional pollutant \rightarrow rural stations
- » Look at other pollutants (NO₂, O₃) to confirm/reject
- » Monte Carlo method not always yield worse statistics when looking at median
- » Using worst RMSE is sensitive to $\rm N_{min}$
 - » Need to check what is happening with the distributions : increase in outliers
- » A the moment : using daily averages
 - » Computation time could become issue (for a "simple validation")

