

CFD modelling of dispersion in neutral and stable atmospheric boundary layers:

Results for Prairie Grass and Thorney Island

9th May 2016

Rachel Batt, Simon Gant, Jean-Marc Lacome, Benjamin Truchot and Harvey Tucker

HSL: HSE's Health and Safety Laboratory

Overview

- Introduction
- Test cases
- CFD model
- Results
- Conclusions

Introduction – Are CFD models suitable for risk assessment?

- Growing interest in the use of CFD to assess risks from releases of toxic and flammable gases from industrial sites
- How do CFD models perform for stably-stratified atmospheric conditions, which often produce the largest hazardous zones in industrial risk assessments?

Literature – Known problems with standard *k-ɛ* for atmospheric dispersion

- Best practice guidance (BPG) available: Franke et al (2007), French Working Group (2015)
- Difficult to maintain the correct atmospheric boundary layer (ABL) profiles in CFD codes with k-ε turbulence model
 - Various solutions in the literature (discussed in Batt et al. 2016)
 - Many are complex and difficult to implement
 - Little is known about effects on gas dispersion

4 HSL: HSE's Health and Safety Laboratory

Test cases – 'simple', well-defined, largescale field trials

What is the impact on dispersion predictions of errors introduced by CFD models of ABLs?

- Prairie Grass (Barad, 1958)
 - Flat, empty terrain
 - Continuous passive gas releases (SO2)
 - Neutral (PG33) and stably-stratified (PG36) conditions
- Thorney Island (McQuaid and Roebuck, 1985)
 - Flat, empty terrain
 - Continuous dense gas releases (Freon/Nitrogen mix)
 - Stably-stratified (TI47)
- Cases chosen are not sufficient to provide a statistical evaluation of the CFD model's capabilities

5

CFD Model – User judgement required

- Wind speed and direction assumed constant, no meandering
- Inlet ABL profiles of *U*, *k* and *ε* from Lacome and Truchot (2013) with temperature profile *T* from Alinot and Masson (A&M, 2005)
- Hexahedral cells used for PG, hex-dominant (prisms) for TI
- Input parameters and mesh statistics in the table below

Trial	PG33	PG36	TI47
Atmos. stability (Pasquill class)	Neutral (D)	Stable (F)	Stable (F)
Wind speed (ms ⁻¹)	8.5	1.9	1.5
Wind reference height (m)	2	2	10
Roughness length, z_0 (m) – ABL	0.006	0.006	0.01
Roughness length, z_0 (m) – Wall	0.006	0.006	0.0008 and smooth
Domain size (m × m × m)	2000 × 100 × 30	2000 × 100 × 30	1000 × 800 × 10
Total grid nodes (millions)	1.6	1.6	2.9
Near-wall cell height (m)	0.4	0.4	0.05
Turbulence model	Standard k-ɛ	Standard k-ε	Standard k-ɛ and A&M

6

Roughness specification – Incompatible with mesh requirements

For Thorney Island it was not possible to use z₀ from the experimental measurements...

In CFX $k_s \approx 30z_0$ and wall functions for $k-\varepsilon$ turbulence model have limit on near-wall cell height of $z_c > 2k_s$. So, for TI47 with $z_0 = 0.01$ m: $k_s = 0.3$ m and $z_c > 0.6$ m

THE DENSE GAS CLOUD IS ONLY ABOUT 1M DEEP!

 $z_c = 2k_s$ $k_s = 0.3 \text{ m}$

- z₀ on the wall was limited by the mesh to 0.0008 m or smooth
- z_0 in the ABL profiles on the inlet was correct at 0.01 m
- We expect the profiles to change but how much will this affect the gas dispersion?

HSL: HSE's Health and Safety Laboratory

Source resolution – Difficult to reconcile with far field resolution

- Prairie grass: point source
- Thorney Island: mass flow inlet

Assessing effects of profile change with multiple release points and fixed profiles

- Prairie Grass only
- Solving the full transport equations for all variables
 - Passive scalar was injected at two locations
 - If the profiles change gas will disperse differently
- ABL profiles 'fixed' throughout the domain as a reference case

Prairie Grass, neutral atmosphere – Profile changes increase concentration

10 HSL: HSE's Health and Safety Laboratory

Prairie Grass, stable atmosphere – Profile changes reduce concentration

11 HSL: HSE's Health and Safety Laboratory

- Minimise the effects of profile changes in the neutral case by putting the source near the inlet
- Predicted concentrations are up to 30 times larger than the experiments
 - Mixing is globally underestimated in the model
 - No wind meander
 - Crude source model but difficult with domain scale
 - Only two tests

Thorney Island, stable atmosphere – Insufficient vertical mixing

13 HSL: HSE's Health and Safety Laboratory

Thorney Island, stable atmosphere – Insufficient vertical mixing

CFD models face several challenges for atmospheric dense-gas dispersion

- CFD results with the standard k-ε model show poor agreement with measurements
- The roughness length was smaller than in the experiments but...
- The correct roughness length could not be used in the CFD model
 - Requires near-wall grid cell to be at least 0.6 m high
- Our Alinot and Masson (2005) model was found to be numerically unstable with the dense gas present and failed to produce results

Conclusions – Are CFD models suitable for use in risk assessment?

- Minor changes in ABL profiles impact on dispersion
- Difficult to reconcile the mesh required at the source with the ultimate scale of the release
- Limited ability to handle roughness mesh requirements for roughness and dense gas dispersion are incompatible
- For cases like Prairie Grass and Thorney Island alternative models might be better

It is important that risk assessments using CFD results take into account the uncertainties introduced by the limitations of the k- ε turbulence model and issues relating to surface roughness and grid resolution

Disclaimer

This publication and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

References

- Alinot, C. and Masson, C. 2005. K-e model for the atmospheric boundary layer under various thermal stratifications. Transactions of the ASME. 127. Pp 438 443.
- Barad, M.L, 1958: Project Prairie Grass, a field program in diffusion, Vol. 1–3, Geophysical Research Papers No. 59, Rep. AFCRC-TR-58-235, U.S. Air Force Cambridge Research Center, Bedford, Massachusetts.
- Batt, R. S.E. Gant, J.-M. Lacome and B. Truchot, 2016: Modelling of stably-stratified atmospheric boundary layers with commercial CFD software for use in risk assessment, 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Freiburg, Germany, 5-8 June 2016.
- Franke J., Hellsten A., Schlünzen H., Carissimo B. (Eds.), 2007, Best practice guideline for the CFD simulation of flows in the urban environment, COST Action 732 "Quality assurance and improvement of microscale meteorological models". COST Office, Brussels, Belgium.
- French Working Group, 2015, Guide de Bonnes Pratiques pour la réalisation de modélisations 3D pour des scénarios de dispersion atmosphérique en situation accidentelle. Available for download from http://www.ineris.fr/aida/liste_documents/1/86007/0
- Lacome J.-M., Truchot B., 2013, Harmonization of practices for atmospheric dispersion modelling within the framework of risk assessment, 15th conference on "Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes", Madrid, Spain, 6-9 May 2013.
- McQuaid J and Roebuck B, 1985: Large scale field trials on dense vapour dispersion, Commission of the European communities indirect action programme "Safety of thermal water reactors", 1979-83, Final report on contracts 029SRUK and 036SRUK with the Health and Safety Executive, EUR10029en, Commission of the European Community, Brussels.
- Oke, T. 2006. Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organisation, Instruments and observing methods, Report No. 81, WMO No. 1250. 1-47.