

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

B. Sanchez⁽¹⁾, JL Santiago⁽¹⁾, A. Martilli⁽¹⁾, M. Palacios⁽²⁾, M. Pujadas⁽²⁾, L. Nuñez⁽²⁾, M. German⁽²⁾, J. Fernandez-Pampillon⁽³⁾ and J.D. Iglesias⁽⁴⁾

⁽¹⁾ Atmospheric Pollution Modelling, Air Pollution Division, CIEMAT, Madrid, Spain

⁽²⁾ Atmospheric Pollution Characterization and POC, Air Pollution Division, CIEMAT, Madrid, Spain

⁽³⁾ National University of Distance Education (UNED), Madrid, Spain

⁽⁴⁾ Alcobendas City Council, Madrid, Spain

Outline

- **1.** Introduction
- **2. Experimental Campaign**
- **3. CFD Model Description and Set-Up**

4. Results

- Evaluation of the chemical effects on pollutants dispersion with experimental data
- Analysis of the Photocatalytic Effect

5. Conclusions

Introduction Experimental Campaign CFD Model Description Results Conclusions

1. Introduction

 Exhaust gases are the main source of NO and NO₂ emissions in an urban area

Worsen of Urban Air Quality

- An accurate understanding of urban air quality requires considering the coupled behavior between dispersion of reactive pollutants and atmospheric dynamics.
- Usually, NO and NO₂ are modeled as passive tracer at microscale.

Which is the impact on NO and NO₂ concentrations by including chemical reactions in a <u>CFD model in a real urban zone</u>?

 The behavior of the photocatalytic materials has been studied extensively in controlled laboratory conditions and they are being considered as a possible solution to reduce NOx concentrations in urban areas.

Which is the efficiency of this material in real urban areas?

• Within the framework of LIFE MINOx-STREET Project, the efficiency of photocatalytic materials is being researched in real urban scenarios.

Main Objective: CFD Modelling of NO and NO₂ dispersion applying different chemical approaches including the NO deposition effect by photocatalytic pavement in a real urban area

1. Evaluation of the chemical effects on NO and NO₂ dispersion

Comparison with experimental measurements

2. Analysis of the photocatalytic effect on NO concentration

2. Experimental Campaign

- Location: North of Madrid
- 25th September 25th October →

The maximum effectiveness of NO deposition by <u>Photocatalytic Materials</u> is obtained under specific meteorological conditions

 $\begin{array}{c} R > 400 \ Wm^{-2} \\ RH < 65 \ \% \\ U < 5 \ m \ s^{-1} \end{array}$

29th September, 2015 \rightarrow 12.00-13.00 UTC

Background Measurements (•) \rightarrow $\begin{array}{c} h = 20 \text{ m} \\ d = 300 \text{ m} \end{array}$

- Wind speed and direction
- Pollutants concentration: NO, NO₂ and O₃

Experimental Campaign

In the research area:

Photocatalytic area

Laboratory Tests

- \circ L= 60 m
- NO deposition: $V_d = 0.5 \ cm \ s^{-1}$
- Measurements Points
 - 6 sampling points: NO and NO₂
 - o h=1m

More details in the poster session of this conference (Pujadas et al. (ID. 090))

Introduction Experimental Campaign CFD Model Description Results Conclusions

3. CFD Model Description and Simulations Set-Up

Numerical simulations are based on the Reynolds averaged Navier-Stokes equations (RANS) with the k- ϵ turbulence model (STARCCM+ v9.04.011-R8)

CFD Model Description and Set-Up

- Unsteady state simulations
- <u>Inlet boundary conditions</u> from experimental data (•)
 - At roof of the building (h=20 m)
 - o d=300 m
 - $o \Delta t = 5min$

• Meteorological conditions \rightarrow <u>Neutral atmospheric conditions</u>

HARMO'17

CFD Model Description and Set-Up

- <u>Chemical approaches</u>
 - Non-Reactive pollutants • Photostationary Steady State (PSS): $NO_2 + h\nu \rightarrow NO + 0$ $0 + O_2 + M \rightarrow O_3 + M$ $O_3 + NO \rightarrow NO_2 + O_2$
- Photocatalytic effect

- Sink of NO: $dep_{NO} = -[NO] \cdot V_d$
- $V_{d,exp} = 0.5 \text{ cm } s^{-1} \leftarrow \text{Laboratory Tests}$

NO Transport Equation $\frac{\partial NO}{\partial t} + U_i \frac{\partial NO}{\partial x_j} = D \frac{\partial^2 NO}{\partial x_j \partial x_j} + \frac{\partial}{\partial x_j} \left(K_c \frac{\partial C_i}{\partial x_j} \right) + [\Delta NO]_{Chem} + S_{em} + depNO$

NOx Emission

• Emission Factor (EF):

Vehicle type	NOx (g∕km)
Bus	3,46
Motorbike	0,13
Vehicle	0,44
Light vehicle	0,81
Heavy vehicle	1,86

- $NO + NO_2 = NO_x$
- Volumetric emission ratio (*): $\frac{NO}{NO_2} = 10$

- <u>Within the studied area:</u>
 - No. of vehicles
 - Vehicle type
 - Outside the studied area:

$$S_{NOx}(out) = TN_{veh,RS} \frac{DTI_{out}}{DTI_{RS}} EF_{veh}$$

HArmo'17

The emission changes

every 5 min

 $TN_{veh,RA}$: Total number of vehicles in the research street DTI_{RS} : DTI in the research street

 $S_{NOx} = EF_{type \ veh} \cdot N_{veh}$

0

4. Results

1. Evaluation of the simulated chemical approaches

Differences in the simulated concentration of NO and NO_2 regarded as:

Non-reactive pollutants

Photostationary Steady State

1.1. Spatial distribution concentration

1.2. Time series at measurements points

1.3. Evaluation of the time average concentration using experimental data

2. Study of the photocatalytic effect using simulation results in a real urban scenario

4.1. Evaluation of the simulated chemical approaches

• Spatial distribution at $h=1 \text{ m} \rightarrow t=60 \text{ min}$

NO tracer

NO reactive

difNO (ppb) -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 **12**

• Spatial distribution at $h=1m \rightarrow t = 60 \min$

Differences Tracer and Reactive Location
Atmospheric conditions

Time evolution of NO₂

• <u>Comparison of the time average concentration with experimental measurements</u>

16

• NO₂

• Better results using the photostationary steady state

	Tracer	PSS	Acceptance Criteria (Goricsan et al., 2011 and Chang et al., 2005)
NMSE	0.55	0.18	NMSE < 1.5
FB	0.65	0.33	-0.3 < FB <0.3
FAC2	50 %	100 %	

Results | Analysis of the photocatalytic effect in the real urban scenario

4.2. Analysis of the photocatalytic effect in the real urban scenario

- The photocatalytic effect is negligible and it is only observed over the pavement.
- The reduction in NO concentration at 1 m is slightly higher than at pedestrian level

Results | Analysis of the photocatalytic effect in the real urban scenario

 Vertical Profiles of the decrease of NO concentration due to photocatalytic pavement

- The maximum value is 0.7 ppb.
- The maximum differences are found in the points located over the pavement

Conclusions

- The introduction of chemical reactions in the CFD simulations modifies the amount of pollutant concentration so that the NO concentration is reduced and NO₂ concentration is increased.
- NO and NO₂ concentration simulated by both chemical approaches are in agreement with the experimental data.
- Better results of NO and NO₂ concentration are obtained taking into account reactive pollutants using the photostationary steady state.
- The photocatalytic effect is evaluated by means of CFD simulations considering reactive pollutants and the NO deposition due to photocatalytic pavement. The results show a small decrease in NO concentration, even close to the material at ground.
- These results are obtained for a selected photocatalytic material in specific meteorological conditions in a real urban area.

Cierro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Thank you

This study has been supported by European Project LIFE MINOx-STREET (LIFE12 ENV/ES/000280) funded by EU.

Authors thank to Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) by helping in using its computing facilities for the simulations. CETA-CIEMAT belongs to CIEMAT and the Government of Spain and it is funded by the European Regional Development Fund (ERDF).