Best Practice in Applying Emergency Response Tools to Local-scale Hazmat Incidents

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO17), 9-12 May 2016.

S. Herring¹, P. Armand², C. Gariazzo³ ¹Dstl, ²CEA,³INAIL.

Contact: sjherring@dstl.gov.uk

DSTL/CP95411

25 May 2016 © Crown copyright 2016 Dst

Introduction

 Many potentially dangerous Chemical, Biological and Radiological (CBR) materials are produced, transported and used in urban areas:

25 May 2016 © Crown copyright 2016 Dstl

Introduction

- Accidental or malicious releases are a significant threat to people, the environment and infrastructure.
- First responders and decision makers require tools to provide situational awareness to:
 - Protect people;
 - Minimise environmental effects;
 - Protect infrastructure.

(© Crown Copyright 2016, Defence Images)

25 May 2016 © Crown copyright 2016 Dstl

dst

COST Action ES1006

- A four year Action on: 'Evaluation, improvement and guidance for the use of local-scale emergency prediction and response tools for airborne hazards in built environments'
- Three elements:
 - Methodology for model evaluation;
 - Model performance comparisons;
 - Development of best practice guidance.

25 May 2016 © Crown copyright 2016 Dst

Emergency Response Tools

• A wide range of ERTs exist:

 Value is dependent on accuracy of dispersion modelling:

25 May 2016 © Crown copyright 2016 Dst

Challenges

- Providing dispersion models that can handle:
 - Environmental complexity;
 - Uncertainty in source term parameters and meteorological conditions;
 - The timescale requirements.

Better, more informative hazard predictions

Better situational awareness

Better decisions and outcomes

25 May 2016 © Crown copyright 2016 Ds

Types of Dispersion Model

Model type	Description	Execution time
1	Do not resolve dispersion around buildings. Typically semi empirical Gaussian plume/puff methods of varying complexity and sophistication.	Seconds to minutes
2	Resolve the dispersion around buildings. Typically couple rapid flow field calculation methods with Lagrangian particle dispersion models.	Minutes to hours
3	Resolve the dispersion around and within buildings by solving fluid flow equations. computational fluid dynamics methods such as RANS and LES modelling.	Hours to days

25 May 2016 © Crown copyright 2016 Dstl

Concerns

- Accurate and timely local-scale dispersion modelling is essential to provide the situational awareness required to respond effectively to releases of hazardous materials in urban areas;
- First responders often use only the simplest Type 1 models which may be subject to large errors;
- Emergency responders are not taking advantage of more sophisticated approaches that could be used.

25 May 2016 © Crown copyright 20

Model Comparisons

- ES1006 compared model predictions from ~20 models against dispersion data from:
 - Wind tunnel experiments;
 - An urban field experiment;
 - An actual incident.
- Results showed that:
 - Increasing model sophistication led to increasing model predictive accuracy when data was from a wind tunnel;
 - Model performance differences reduced when the data was from the field.

dstl

25 May 2016 © Crown copyright 2016 Dst

BPG requirements

- For the BPG to be useful to the target audience it had to be:
 - Applicable to the wide range of situations that might be encountered;
 - Applicable to actors at a range of decision making levels;
 - Written for the responder and not the ERT developer: clear, succinct and avoiding technical details.

COST ES1006

Best Practice Guidelines

for the use of Atmospheric Dispersion Models in Emergency Response Tools at local-scale in case of hazmat releases into the air

COST Action ES1006

Evaluation, improvement and guidance for the use of local-scale emergency prediction and response tools for airborne hazards in built environments

April 2015

[dstl]

25 May 2016 © Crown copyright 2016 Dstl

Best Practice Guidance

 Action conducted a survey, including the ARIA BARPI¹ database of 40,000 accidents, to identify range of threat scenarios:

Scenarios		
Ruptured transfer pipe on a chlorine tanker	Small leak of chlorine from a moving train	
Ammonium hydroxide liquid pool	Hydrochloric acid reaction vessel accident	
Sulphur oxide leak within a building	Spill of vinyl chloride onto the sea at a port	
Fire in a petrochemical storage facility	Underwater leak of styrene after ship hits reef	
Total rupture of an ammonia rail tanker	Long release of legionella from cooling tower	
Fire at a pesticide storage warehouse	Anthrax release from research facility exhaust stack	
Rupture of butane pipe, followed by ignition	Leak of fission products from a nuclear power station	
Malevolent release of chemical agent	Terrorist use of Radiological Dispersal Device (RDD)	

¹Analysis, Research and Information on Accidents, Bureau for Analysis of Industrial Risks and Pollutions

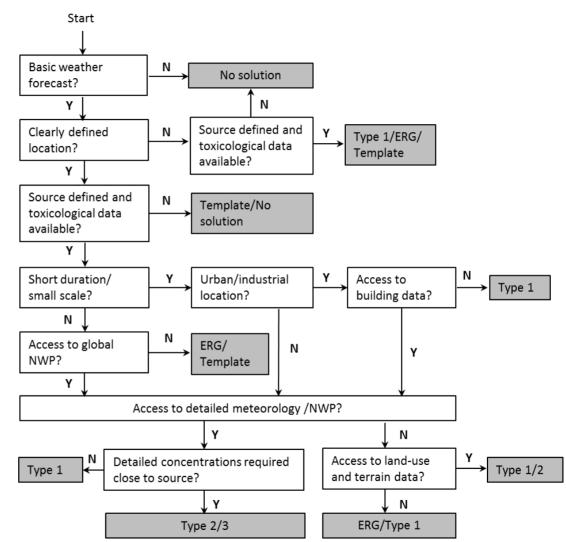
dstl

25 May 2016 © Crown copyright 2016 Dstl

Best Practice Guidance

- Impractical to provide detailed guidance for handling every type of scenario;
- Guidance related to 4 scenarios:

Release type	Description	
Neutrally buoyant	A small amount of chlorine released within an urban area.	
Positive buoyancy release	A toxic plume produced by a warehouse fire.	
Dense gas release	A leakage of many tonnes of chlorine or LPG, involving the flashing and pooling of material.	
A dirty bomb	An explosive release of radionuclides.	

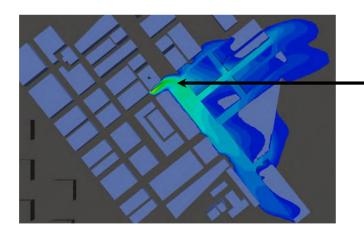

25 May 2016 © Crown copyright 2016 Ds

Flowchart

- Hazard predictions should employ the most sophisticated modelling approach possible, given:
 - The input information;
 - The time available.

dst

Ministry


of Defence

© Crown copyright 2016 Dstl

25 May 2016

Further Considerations

- Type 2 or 3 models can provide a substantially enhanced level of situational awareness identifying:
 - Localised areas of high concentration;
 - Risk from short-term fluctuations.

Dispersion turning through 90 degrees

25 May 2016 © Crown copyright 2016 Dst

Improving Emergency Response Modelling

- Recognition of the limitations of current methods, and benefits of more sophisticated ones;
- Development of approaches to enable more sophisticated methods to be used in rapid response;
- Utilisation of developments in connectivity to:
 - Improve the quality of input data;
 - Enable greater computing resources to be accessed;
 - Bring responder and modeller closer together.

25 May 2016 © Crown copyright 2016 I

Summary

- COST Action ES1006 has produced a BPG document for Emergency Responders;
- Emergency response modelling should use:
 - Models with a validated level of accuracy;
 - The most sophisticated modelling approach possible, given the input information and time available.
- Scientists and practitioners should work closely together to leverage the state-of-the-art to create better emergency response systems.

25 May 2016 © Crown copyright 2016

Acknowledgements

The authors would like to acknowledge the support of the EU Cooperation in Science and Technology organisation and the work of the other members of COST Action ES1006 (www.elizas.eu).

25 May 2016 © Crown copyright 2016 Dst

Questions?

Content includes material subject to © Crown copyright (2016), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk

25 May 2016 © Crown copyright 2016 Dstl

