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Particle Deposition 

• Important consideration for dispersion 
modelling  
– Key sink within aerosol budget 

• Vertical surfaces dominate urban 
environment 
– Some models only account for deposition 

onto horizontal surface, e.g. Bruse (2007) 

• Impacts on human health – exposure 
pathway 

• Deterioration and dirtying of built 
environment – cultural heritage 
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BACKGROUND: REVIEW OF PAST  
EXPERIMENTS 



Long-term measurements 

• Roed (1990) performed series of analyses on urban surfaces 

• Following nuclear tests and Chernobyl disaster in 1980s 

• Deposition velocities on vertical surfaces an order of 
magnitude (or more) less than on horizontal surfaces 

 

• Also long-term component to Salissure de Façade (SaliFa) 
project (France) 



Short-term measurements 

• Pesava et al. (1999) measured deposition velocity onto 
surfaces of a cube place outdoors 
– Not a real urban surface 

• SaliFa short-term experiments 
– Maro et al. (2014) conducted 2 sets of experiments in 2005 and 2006 

– Constructed panels of glass and plaster glazing 

– Deposition of fluorescein on timescale ~1 hour 

 

 

Peseva et al., Sci. Tot. Environ. 

Maro et al., 
J. Aerosol Sci. 

– Detailed observations of flow, 
turbulence, and aerosol 
concentrations  

Submicronic aerosols 
– The 0.1-1 μm range has been focus of past 

studies;  
– Peak range in urban areas (Horvath et al. 

1996), including soot, radionuclides, etc. 
 



EXPERIMENTAL SET-UP 



Preliminary analyses 

• Set up in-situ meteorological station to 
guide experimental design 

• Input in CFD model FLUENT   

 

North 

Synoptic  wind direction 

Test site wind direction 



Aerosols emitted 

• Pneumatic generator of 
Fluorescein rented from 
TechSystemes 

• Diameter: 0.138 𝜇m 

• Mass flow rate: 33.9 
𝒎𝒈

𝒉𝒓
 

• Density: 1.5 
𝒈

𝒄𝒎𝟑
 



Experimental set-up 

 



Experimental set-up 

 
Aerosol 
generator 

Test 
panel 

Sonic 
anemometers 

North 



Panel and materials 
• Selected 2 glass types (same as SaliFa) and 3 additional 

common building materials – marble, ceramic, Leccese stone 

• Constructed panel with wood and foam so no significant 
surface elevation changes at boundaries (± 2 mm) 

 

 

 

 

 

 

 

• Roughness height measurements for ceramic and marble via 
atomic force microscope reveals consistently ~0.8 μm 
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EXPERIMENTAL RESULTS: 
MICROMETEOROLOGY  



Test 1 
Panel 

𝜙 
Sonic E 

2.90 m/s 

𝜙 = 8.2° 

σrms = 1.41 m/s 

L0 = 15.7 

Sonic C 

U = 2.84 m/s 

𝜙 = 10.1° 

σrms = 1.66 m/s 

L0 = 26.9 m 

Sonic D 

U = 3.10 m/s 

** 

σrms = 1.67m/s 

L0 = 24.9 m 

Sonic B 

U = 3.01 m/s 

𝜙 = 9.4° 

σrms = 1.74 m/s 

L0 = 27.7 m 
Sonic A 

U = 2.29 m/s 

𝜙 = 9.1° 

σrms = 1.91 m/s 

L0 = 20.7 m 

∗ 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒 
 sonic anemometer 
 low volume air samplers 

204.9 
ng/m3  

353.3 
ng/m3  

566 
ng/m3  

Δ𝑇𝑝𝑎𝑛𝑒𝑙 = 𝑇𝐼𝑅,𝑝𝑎𝑛𝑒𝑙 − 𝑇∞ 

buoyancy effects near panel 

ΔTpanel = -1.28 
Wind Speed (U) 

Direction (𝝓) 

rms velocity (σrms) 

Integral length scale (L0) 

Incoming 
flow wind 

vector 

𝐿0 =  
𝑢 𝑖 𝑢 𝑖 + 𝑟

𝑢 𝑖 2
𝑑𝑟

∞

𝑟=0

 



Test 2 
Panel 

𝜙 
Sonic E 

U = 2.70 m/s 

𝜙 = 9.5° 

σrms = 1.51 m/s 

L0 = 19.7 m 

Sonic C 

U = 2.64 m/s 

𝜙 = 12.9° 

σrms = 1.70 m/s 

L0 = 22.3 m 

Sonic D 

U = 2.92 m/s 

** 

σrms = 1.76 m/s 

L0 = 25.5 m 

Sonic B 

U = 2.83 m/s 

𝜙 = 13.1° 

σrms = 1.79 m/s 

L0 = 22.9 m 
Sonic A 

U = 2.22 m/s 

𝜙 = 15.8° 

σrms = 1.91 m/s 

L0 = 16.9 m 

∗ 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒 
 sonic anemometer 
 low volume air samplers 

155 
ng/m3  

195.3 
ng/m3  

528.8 
ng/m3  Wind Speed (U) 

Direction (𝝓) 

rms velocity (σrms) 

Integral length scale (L0) 

ΔTpanel = +3.86 

Incoming 
flow wind 

vector 



Test 4 
Panel 

𝜙 
Sonic E 

U = 1.62 m/s 

𝜙 = 11.4° 

σrms = 1.15 m/s 

L0 = 15.2 m 

Sonic C 

U = 1.62 m/s 

𝜙 = 16.8° 

σrms = 1.27 m/s 

L0 = 18.1 m 

Sonic D 

U = 1.77 m/s 

** 

σrms = 1.38 m/s 

L0 = 19.2 m 

Sonic B 

U = 1.79 m/s 

𝜙 = 17.7° 

σrms = 1.36 m/s 

L0 = 20.0 m 
Sonic A 

U = 1.60 m/s 

𝜙 = 23.7° 

σrms = 1.48 m/s 

L0 = 14.2 m 

∗ 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒 
 sonic anemometer 
 low volume air samplers 

124.2 
ng/m3  

164.4 
ng/m3  

457.7 
ng/m3  

ΔTpanel = +4.06 

Wind Speed (U) 

Direction (𝝓) 

rms velocity (σrms) 

Integral length scale (L0) 

Incoming 
flow wind 

vector 



Flow characteristics 

• Tests 1, 2, and 4 similar 

• Flow channelization along wall 

• Wall acts as local sink of turbulent kinetic energy (TKE) 

• Elongation of eddies parallel to wall 

• Negative buoyancy in Test 1; positive buoyancy in Tests 2 & 4 



Test 3 
Panel 

𝜙 
Sonic E 

U = 1.46 m/s 

𝜙 = 6.0° 

σrms = 0.72 m/s 

L0 = 6.8 m 

Sonic C 

U = 1.49 m/s 

𝜙 = 5.4° 

σrms = 0.84 m/s 

L0 = 12.2 m 

Sonic D 

U = 1.52 m/s 

** 

σrms = 0. 80 m/s 

L0 = 11.8 m 

Sonic B 

U = 1.52 m/s 

𝜙 = 2.6° 

σrms = 0.85 m/s 

L0 = 13.5 m 
Sonic A 

U = 1.17 m/s 

𝜙 = -6.1° 

σrms = 0.92 m/s 

L0 = 11.5 m 

∗ 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑡𝑜 𝑠𝑐𝑎𝑙𝑒 
 sonic anemometer 
 low volume air samplers 

683.9 
ng/m3  

696.1 
ng/m3  

963.6 
ng/m3  

ΔTpanel = +8.32 

Wind Speed (U) 

Direction (𝝓) 

rms velocity (σrms) 

Integral length scale (L0) 

Incoming 
flow wind 

vector 



EXPERIMENTAL RESULTS: 
DEPOSITION VELOCITY 



Deposition velocity 

• Material samples and LVS filters analyzed using spectrofluorometric 
technique 

• 𝑉𝑑 = −
𝐽

𝐶∞
 

– J is mass flux onto surface (kg m-2 s-1), get from materials post-analysis 

– 𝐶∞ is concentration (kg m-3), take from LVS 1 assuming uniform near panel 

 

 

 

 

 

• Spans three orders of magnitude! 
** These are preliminary results – chemical analysis is ongoing for Leccese stone results and quality 
control of other materials 

 Deposition 
Velocity (m s-1) 

Auto-cleaning 
glass 

Standard glass Marble Ceramic 

Test 1 8.17×10-3 7.53×10-3 1.05×10-3 1.03×10-3 
Test 2 5.27×10-4 6.71×10-4 6.56×10-4 2.94×10-4 
Test 3 1.75×10-4 2.18×10-4 2.07×10-4 7.1×10-5 
Test 4 4.16×10-4 5.11×10-4 2.44×10-4 2.49×10-4 

SaliFa2: Test 3 ~1.65×10-5 ~2.05×10-5       



ANALYSIS: GOVERNING 
PARAMETERS 



Dimensional analysis 

𝑉𝑑 = F 𝑈, 𝜙, 𝜎𝑟𝑚𝑠, 𝐿0, 𝑔𝛽Δ𝑇𝑝𝑎𝑛𝑒𝑙 , 𝜐, 𝛼, 𝜉𝑚𝑎𝑡  
• 𝜉𝑚𝑎𝑡  is dimensionless parameter accounting for material 

characteristics of surface and aerosol 

𝑉𝑑
𝜎𝑟𝑚𝑠

= 𝐹 𝜙, 𝜉𝑚𝑎𝑡,
𝑈𝐿0
𝜐
,
𝐿0
3𝑔𝛽Δ𝑇𝑝𝑎𝑛𝑒𝑙

𝜐2
,
𝜐

𝛼
 

                                            Reynolds, Grashof, and Prandtl numbers 



Applying to our case 

• 𝑉𝑑 = F 𝑈,𝜙, 𝜎𝑟𝑚𝑠, 𝐿0, 𝑔𝛽Δ𝑇𝑝𝑎𝑛𝑒𝑙 , 𝜐, 𝛼, 𝜉𝑚𝑎𝑡  

•
𝑉𝑑

𝜎𝑟𝑚𝑠
= 𝐹 𝜙, 𝜉𝑚𝑎𝑡 ,

𝑈𝐿0

𝜐
,
𝐿0
3𝑔𝛽Δ𝑇𝑝𝑎𝑛𝑒𝑙

𝜐2
,
𝜐

𝛼
 

• For Tests 1, 2, and 4, φ was approximately constant (~15°) 

• Can extract all needed parameters  for single test from Maro et al. 
(2014) except L0 for which assumed constant energy dissipation 
(𝜎𝑟𝑚𝑠

3/𝐿0) between our Test 4 and SaliFa2 Test 3 

Test  
# 

Reynolds Number 
(Re) 

Grashof Number 
(Gr) 

Wind Angle  
(φ) 

1 3.2 x 106 (-) 1.7 x 1012 9.1 

2 2.5 x 106 2.7 x 1012 15.8 

3 9.8 x 105 2.4 x 1012 -6.1 

4 1.5 x 106 1.6 x 1012 23.7 

SaliFa2_3 8.9 x 105 2.0 x 1011 ? ~≥0 



Relating dimensionless parameters 

𝑉𝑑
𝜎𝑟𝑚𝑠

∝ 𝑅𝑒𝑚𝐺𝑟 𝑛 

𝜉𝑚𝑎𝑡 constant 
between our 
experiment 
and SaliFa 



Relating dimensionless parameters 

• Test 1 stands out because only case where Δ𝑇𝑝𝑎𝑛𝑒𝑙 is 

negative so divergence is attributable to thermophoresis 
(Di Nicola et al. 2016) 

• Consistent trend between standard and auto-cleaning 
glass (except Test 1) – self-cleaning properties rely on 
sunlight (Parkin and Palgrave 2005) 

• SaliFa order of magnitude difference with our 
experiments on x-axis and y-axis 

 



Relating dimensionless parameters 



CONCLUSIONS 



Conclusions 

• At large Grashof numbers (>1012), the deposition velocity 
depends principally on sign (+/-) of buoyancy due to 
thermophoretic effects 

• When surface heated, at high Gr and Re, deposition velocity 
may be approximately constant, independent on Gr and even 
the material properties 

• More experiments are needed at intermediate Gr to address 
discrepancies between results 

• Just addressed principally one micrometeorological scenario – 
there are many more to solve with further experiments, but 
challenges still exist in conducting these experiments 

• Introduction of an approach which helps to quantify near-wall 
deposition processes based on local-scale urban flow regime 
for dispersion modelling 
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