HARMO17, Budapest, 9 – 12 May, 2016. Mesh Adaptive LES for micro-scale air pollution dispersion and effect of tall buildings.

Elsa Aristodemou, Luz Maria Boganegra, Christopher Pain, Alan Robins, and Helen ApSimon

London South Bank University

Imperial College London

Outline

- Motivation/Combined Heat & Power plant emissions
- The Wind tunnel Experiments
- Large Eddy Simulation within the FLUIDITY software
- Validation case
- Additional LES cases
- The "Walkie-Talkie" simulation (if there is time)
- Conclusions

The Enflo Wind Tunnel Geometry (Robins, 2013)

- Generates neutral, stable and unstable boundary layers
- Has three dimensional, computer controlled traversing gears, tracer supply systems, calibration facilities, a turntable and extensive condition monitoring.
- Operates under full computer control,

Working section: 20 x 3.5 x 1.5 m (Length x Width x Height) Overall length: 27.2 m Geometry of interest was at the scale of 1:200.

Several Cases were run. We look at First case, with All buildings in place.

The Geometry within the FLUIDITY software plan view with adaptive mesh

4 m long

Wind Tunnel Case Case1

Block	Height (m)
А	0.1428
В	0.1238
С	0.1315
D	0.1228
E	0.0971
F	0.0315
G	0.1152

Initial Tehtrahedral Mesh (GMSH pre-processor) as input in the FLUIDITY software

This mesh is subsequently adapted, based on certain metrics associated with physical parameters: velocity and concentrations:

Adaptive Mesh

Final Number of Elements ~ 1,000,000 ; No of nodes: ~ 175,000

Additional FLUIDITY cases: Cases 2 and 3			Case	2 - Ta	ll
-2.0 -1.0 X-Axis 0.0 1.0		Block	Normal Case1	Tall Case2	Taller Case3
		Α	0.1428	0.1428	0.1428
		В	0.1238	0.4	0.4
	15	С	0.1315	0.4	0.4
	Axis Axis	D	0.1228	0.4	0.4
	×	Е	0.0971	0.2	0.2
Care 3 Taller		F	0.0315	0.2	0.2
		G	0.1152	0.25	0.6

Results presented on three planes

Mertical XZ- plane: Through centre of domain

Horizontal XY- plane At Height of Source

Vertical YZ-plane : Through centre of domain

Mesh-adaptive LES within the FLUIDITY software (http://fluidityproject.github.io/) Pain et al. http://www.amcg.th.ic.ac.uk

- Unstructured finite element mesh Adaptive anisotropic elements, efficiently representing boundary layers and anisotropic flow features.
- Allows resolution in the domain where needed (e.g. streets) with spatially variable max & min anisotropic element length scales, as well as interpolation errors.
- adaptive mesh to resolve what we are interested in e.g. the pollutant concentrations.
- Adaptive mesh allows representation of moving objects (e.g. vehicles, pedestrians) using a 2-phase fluid approach.
- Parallel mesh-adaptivity for large scale problems; up to 100k processors on powerful supercomputers.

Large Eddy Simulation (LES) with sub-grid modelling

(1) Filtered Navier-Stokes with Smagorinsky sub-grid model:

$$\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[2(v + v_t) \tilde{S}_{ij} \right]$$

Anisotropic Eddy Viscosity v_{t} that depends filter width Δ , where: $\Delta = 2*$ local element size $(\mathbf{h}_{\mathcal{L}},\mathbf{h}_{n},\mathbf{h}_{\mathcal{E}}).$

(2) Filtered Advection-Diffusion for a passive scalaron Variable filter width $\frac{\partial \tilde{c}}{\partial t} + \frac{\partial (\tilde{c}\tilde{u})}{\partial x_j} = \frac{\partial}{\partial x_j} \begin{bmatrix} D \frac{\partial (\tilde{c})}{\partial x_j} + \tilde{c}\tilde{u}_j - (cu)_j \end{bmatrix}$ $\Delta = 2*\text{local}$ element size

Large Eddy Simulation (LES) with sub-grid modelling

$$\widetilde{S}_{ij} = \frac{1}{2} \left(\frac{\partial \widetilde{u}_i}{\partial x_j} + \frac{\partial \widetilde{u}_j}{\partial x_i} \right) \left| \begin{array}{c} v_t = l_s^2 \left| \widetilde{S} \right| \\ v_t = (C_s \Delta)^2 \end{array} \right|$$

- Resolved flow field: numerically solved.
- Sub-filter scales: modelled using a
- Smagorisnky-type Subgrid scale model.

Anisotropic Eddy Viscosity $v_{\underline{t}}$ that depends on Variable filter width Δ , where: $\Delta = 2*$ local element size $(\mathbf{h}_{\boldsymbol{\zeta}}, \mathbf{h}_{\mathbf{n}}, \mathbf{h}_{\boldsymbol{\xi}}).$

$$C_s$$
=Smagorinsky constant = 0.11
 Δ =variable filter width: dependent on the element lengths

Plan view of Lines where Detectors are

Validation: Wind Tunnel Case – Mean Concentrations

Validation: Wind Tunnel Case – Mean Concentrations

...and....just to show that not all is "perfect"!

Detectors below the source

Location of Source				
Х	Y	Z		
(m)	(m)	(m)		
-0.01875	0.01875	0.1508		

Velocity field at near ground level – H=0.065m

What is the effect of High Buildings on Dispersion?

The "infamous" Walkie-Talkie building

London, UK, cityscape is changing fast with a large number of high buildings being developed.

Hence, motivation to study the effect of such high buildings on the dispersion of air pollutants.

Building Height effect on Velocities

Effect of Building Height on Velocities

...and to do justice to the results: a clearer image for Case 3

Effect of the instantaneous flow field on dispersion

Building Height effect on Velocity Vectors X-Z Vertical Plane

Effect of Building Height on the Turbulent flow field X-Z Vertical Plane

Building Height effect on Tracer Dispersion X-Z Vertical Plane

Wind tunnel case: Case 1

Building Height effect on Tracer Dispersion X-Z Vertical Plane

Effect of Building Height on the Turbulent flow field

Y-Z Vertical Plane

Wind tunnel case: Case 1

Velocity contours and Velcocity vectors Y-Z plane

Effect on Dispersion : Y-Z Vertical Plane

Summary/Conclusions

Validation still in progress but so far very promising

 At the micro-scale levels, detailed CFD modelling with high resolution meshes is very important in determining path of contaminants

 Optimal building design/height (in particular): CFD can show some unexpected outcomes – as Case 3 showed.

Thank you for your attention

Acknowledgements

Although of course already as co-authors on this work, still special thanks to:

- *Prof Christopher Pain:* for the development of the FLUIDITY, without whose support this innovative mesh-adaptive CFD work could not be achieved.
- *Prof Alan Robins*: for the provision of the wind tunnel data and fruitful discussions on their interpretation.
- *My two past Master students at LSBU:* (i) Carlos Andres Bernal Castro, for the set-up of the Walkie-Talkie geometry and (ii) Luz Maria Valencia Boganegra for the wind-tunnel geometry.