Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO *PM*10

Conclusion

Acknowledgments

Investigation of the transport of pollutants from the Metropolitan Area of São Paulo and from the industrial city of Cubatão to nearby areas ¹

> Atenágoras Souza Silva¹ Américo A F S Kerr¹ Simone Gioia² Marly Babinsky³

 ¹Instituto de Física da Universidade de São Paulo
² Centro Tecnológico da Marinha de São Paulo, São Paulo, Brazil
³ Centro de Pesquisas Geocronológicas, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil

May 10, 2016

Atenágoras Souza Silva

Goal

Introductio

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

1 Goal

2 Introduction

Area Description

3 Methods

Models Setup MASP's CO sources Cubatão's PM₁₀ Sources

4 Results

BRAMS Simulatons SPRAY Simulations CO *PM*10

Summary

・ロト ・得ト ・ヨト ・ヨト

3

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

Goal

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• Examine pollution episodes at Metropolitan Area of São Paulo (MASP) Cubatão and nearby areas shown at wintertime experiments in São Paulo state.

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

Area Description

Topography and cities in the experiment

23/08/2006 1h UTC

М

- São Paulo: Most important city of MASP. >11 million people and >5 million vehicles. 700m above sealevel.
- 📍 Cubatão: It is 40 km farther from MASP. Strong industrial city. Complex terrain
- Juquitiba: Small City in a remote border area of the MASP, rounded by native vegetation, a co

Methods

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Pollutants Transport on MASP

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM₁₀

Conclusion

- Simulations with mesoscale atmospheric model BRAMS (BRAMS, 2013) and Lagrangian Stochastic Model SPRAY to investigate episodes in a wintertime experiment (Gioia, 2006).
- Studied Experiment: PM_{2.5} and PM₁₀ collected in IGC (Instituto de Geociências - Institute of Geosciences of University of São Paulo), São Paulo city; Juquitiba and Cubatão (at Mogi's Valley), every 12h, for one week.

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup

MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM₁₀

Conclusion

Acknowledgments

Models Configuration

- BRAMS initialized with CPTEC (Centro de Previsão de Tempo e Estudos Climáticos, a Brazilian Weather Forecast Center) Global Files (time resolution of 12h, and Lat-Lon resolution of 0.9375°, with 28 vertical levels).
- Time resolution = 2s.
- 3 nested grids.
- Time Period: from 23 to 29, August 2006.
- Coupling BRAMS/SPRAY with GAP and SurfPro softwares (provided by Arianet), and USGS landuse data.
- Probability Density Functions (PDF): Gram-Charlier truncated to the third order in the vertical, and Gaussian in the horizontal.
- BRAMS's Grid 2 (3Km resolution): input for SPRAY's CO dispersion simulation (MASP's source)
- BRAMS's Grid 3 (1Km resolution): input for SPRAY's *PM*₁₀ dispersion simulation (Mogi Valleys's source)

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

Limeira - São Paulo, Brasil ntro da Grade Maior 🌘 Centro da grade média São José dos Campos - São Centro da grade menoro São Paulo Juquitiba - São Paulo, Bras Cubatão - São Paulo, Brasil SO da Grade Major Data SIO, NOAA, U.S. Navy, NGA, GEBCC 2013 MapLink/Tele Atlas Google earth @ 2013 Cnes/Spot Image 23°54'34,63"S 46'43'51,09"O elev 339tm/de do ponto de visão 583,40 km C

Figure: Simulated Area using BRAMS. Grid Resolution: 12Km (G1 - Larger), 3Km (G2 - within G1) and 1Km (G3 - smaller)

Simulation Area

(a)

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup

MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

Topography and Monitoring Stations

23/08/2006 1h UTC

Stations

MASP's CO sources

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM₁₀

Conclusion

Acknowledgments

(Keer et al, 2005)

- 169 squares with
- Resolution 5km².
- Fleet composition and traffic flow, estimated by Kerr, A., et al., 2005, for the year 2000 at MASP (a total of $1.69 \times 10^6 t.y^{-1}$).
- Reduction factor of 1.5 from 2000 to 2006 CO emissions related with measures at Congonhas' station (CETESB, 2001 and 2007).

Time Modulation (Daily cicle of the sources)

Introducti Area

Pollutants Transport on MASP

Atenágoras Souza Silva

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM₁₀

Conclusion

- CO and *PM*₁₀ time modulation based on 2006 Congonhas's station pattern.
- Why Congonhas's? Near a high traffic Avenue (represents the MASP's CO and *PM*₁₀ time emission profile)
- ratio $CO/PM_{10} = 40.7$ (first aproximation: PM_{10} emissions related with vehicular fleet)

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO *PM*10

Conclusion

Acknowledgments

Cubatão's *PM*₁₀ Sources

E> E • • • •

Wind

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Atenágoras Souza Silva

Goal

Introduction							
Introduction							
		-			•		
In crocicio cita de los							

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons

SPRAY Simulations CO PM₁₀

Conclusion

Acknowledgments

Station	σ _s (u,v) (m.s ⁻¹)	σ _e (u,v) (m.s ⁻¹)	RMSVE (m. s ⁻¹)	<u>r</u> u	r,	P (for the worse r)
1	2.25	1.90	1.65	0.5590	0.8214	< 0.001
3	2.98	3.16	3.12	0.2317	0.7439	< 0.005
4	2.57	2.54	2.73	0.2448	0.6354	< 0.005
5	2.29	2.18	1.61	0.6739	0.8279	< 0.001
6	2.49	2.42	1.43	0.7896	0.8667	< 0.001
7	2.64	1.95	2.10	0.6968	0.7640	< 0.001
8	2.25	1.90	1.65	0.5590	0.8214	< 0.001
9	2.75	2.12	1.66	0.7359	0.8595	< 0.001
10	2.37	2.11	1.93	0.5099	0.8006	< 0.001
14	2.60	2.46	2.79	0.4452	0.4608	< 0.001

Comparisons between observed and simulated horizontal wind at 10 m (N from 120 to 167)

- $\sigma^2 = \sigma_u^2 + \sigma_v^2$
- σ_s , σ_o and RMSVE are close
- r: Good correlation and large sample to compare (N)
- P: Good significance levels

Atenágoras Souza Silva

Goal

Introduction

Area Description

- Methods
- Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO

 PM_{10}

Conclusion

Acknowledgments

CO simulation results

	σ. (x10²	σ, (x10 ²				<co>。 (x10²</co>	<co>. (x10²</co>		
Station	µg.m⁻³)	µg.m⁻³)	RMSE	r	Р	µg.m⁻³)	µg.m⁻³)	Ν	s/o
1	35.4	7.81	45.5	0.30	<0,002	13.4	46.9	91	3.51
5	36.7	14.0	42.2	0.37	⊲0,001	22.7	49.9	93	2.2
7	12.6	17.1	11.8	0.77	⊲0,001	19.9	17.0	53	0.86
11	7.7	8.90	8.7	0.54	⊲0,001	13.8	10.7	91	0.78
12	48.3	11.8	68.5	0.27	⊲0,01	15.2	65.2	75	4.28
13	25.7	19.6	27.5	0.30	⊲0,01	22.8	31.4	84	1.37

CO concentrations - Comparison between observed and simulated values (N from 53 to 93)

- Even low r_s have good significance levels (due to large N)
- σ and average CO for station 12 are poorer because it is in a high traffic Streets and Avenues.
- Station 1 is a park rounded by high traffice Avenues. Due to CO Source resolution, model preditics high emission at this point.
- Better resolution for CO Source could improve the results for average CO values and σ s.

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO

PM10

Conclusion

Acknowledgments

CO Concentration for MASP and Nearby Areas

Pollutants dispersion

25/08/2006 23h UTC ug m⁻³ 23*20'5 23°30'S 23°40'S 23°50'S 240 24°10'5 47°W 46°45'W 46°30'W 46°15'W 1011 0.05 0.1 1 10 20 50 100 200 500 1000 2000

CONTOUR FROM 100 TO 1200 BY 100

CO dispersion down to the coast

PM_{10} dispertion up to the montain range.

PM₁₀ Concentration for MASP and Nearby Areas

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣��

PM_{10}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pollutants Transport on MASP

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

B RA MS Simulatons SPRAY Simulations CO

 PM_{10}

Conclusion

Acknowledgments

Comparation between episodes measures and simulation for PM_{10}

City	Measure	Start date	Finish date	<pm10>0</pm10>	<pm<sub>D>s</pm<sub>	Ratio
				(µg.m⁻³)	(µg.m ^{−3})	s/o
Cubatão	daytime	25/08/2006	25/08/2006	107	33	0.31
Juquitiba	Daytime	25/08/2006	25/08/2006	39	1	0.03
São Paulo	daytime	25/08/2006	25/08/2006	57	50	0.88
Cubatão	night time	25/08/2006	26/08/2006	73	115	1.57
Juquitiba	night time	25/08/2006	26/08/2006	81	2	0.02
São Paulo	Night time	25/08/2006	26/08/2006	84	146	1.74

World Health Organization Daily Guideline exceedance for MP_{10} (WHO, 2005): $50 \mu g/m^3$

- PM₁₀ Results for IGC are well explained by vehicular related emission (initial gess).
- MASP's contributions for PM_{10} episodes in Juquitiba: up to 3%.
- Cubatão's PM₁₀ episodes were well simulated, but better knowlegde about sources can improve the results.

Conclusion

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Carl

Introduction

Pollutants Transport on

MASP Atenágoras Souza Silva

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

- BRAMS/SPRAY were able to simulate reliable concentration fields for vehicular CO emitted in the MASP, as well as the *PM*₁₀ emitted by fertilizer plants at Cubatão.
- Simulations and measures are well correlated
- For Juquitiba, clearly, PM_{10} emitted in MASP related with vehicular fleet is not the main source for the measures in this city.

References

Pollutants Transport on MASP

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO *PM*10

$\mathsf{Conclusion}$

- BRAMS; 2013 ;http://brams.cptec.inpe.br/, acessado em 20/03/2013.
- GIOIA, SIMONE; (2006). Estudo da Composição dos Aerossóis e da assinatura isotópica de Pb como traçador das fontes de poluição atmosférica da cidade de São Paulo. post-doc work.
- Kerr, A., Landmann, M. C., Carvalho, J., 2005: Investigation of CO dispersion from São Paulo Metropolis by means of modelling system for complex terrain. 9Th Harmonisation, 2005.
- Tinarelli, G., D. Anfossi, G. Brusasca, E. Ferreiro, Giostra U., M.G. Morselli, Moussafir J., Tampieri F., Trombetti F., 1994: Lagrangian Particle Simulation of Tracer Dispersion in the Lee of a schematic Two-Dimensional Hill. Journal of Applied Meteorology, 33, 744-756.
- Tinarelli, G., D. Anfossi, M. Bider, E. Ferrero, S. Trini Castelli, 2000: A new high performance version of the Lagrangian particle dispersion dispersion model SPRAY, some case studies. Air Pollution Modelling and its Applications XII, S.E. Gryning and E. Batchvarova, eds, Kluwer Academic/Plenum Press. New York, 499-507.
- WHO World Health Organization, 2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide.

Pollutants Transport on MASP Atenágoras

Acknowledgments

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Goal

Introduction

Souza Silva

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

- Arianet
- FAPESP (Fundo de Amparo à Pesquisa do Estado de São Paulo - São Paulo Research Foundation)
- MASTER-IAG (http://master.iag.usp.br)

Atenágoras Souza Silva

Goal

Introduction

Area Description

Methods

Models Setup MASP's CO sources Cubatão's *PM*10 Sources

Results

BRAMS Simulatons SPRAY Simulations CO PM10

Conclusion

Acknowledgments

THANK YOU! More Questions: athenagoras@gmail.com

Figure for São Paulo city: Rafael Neddermeyer https://br.boell.org/sites/default/files/uploads/2015/01/populuicao-em-saopaulo_f otos — publicas_f afael — neddermeyer2.jpg Licence: Creative Commons: http://creativecommons.org/licenses/by/3.0/deed.pt

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で