Implementation and application of a source apportionment approach in the SIRANE urban air quality model

Chi Vuong Nguyen and Lionel Soulhac

Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon, France

17th Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Conference

Outline

- **1**. Introduction and motivations
- 2. Brief description of the SIRANE model
- 3. Source apportionment (SA)
- 4. Application to "data assimilation"
- 5. Conclusions and perspectives

1 – Introduction and motivations

1 – Introduction and motivations

Practical problems motivating urban air quality modelling

Urban air quality statistics

CENTRALELYON

- Annual statistics according to EU regulatory thresholds
- Cartography of concentration
- Population exposure

Prediction and operational control

- Tomorrow forecast of concentration values
- Simulation of reduction scenario

Urban planning

- Impact of a new urban equipment
- Impact of new traffic plan
- Impact of new legislation for vehicles or fuel

1 – Introduction and motivations

Motivations for source apportionment

CENTRALELYON

• Source apportionment motivations

- To estimate the origin of concentration at a given location
- To quantify a priori the effect of a source reduction
- To adjust emissions in order to reduce model-measurements differences (data assimilation)

• State of art on source apportionment

- Already used in transport & chemistry models at the regional scale
 - CAMx (Wagstrom et al. 2008)
 - CMAQ (Kwok et al., 2013)
- As we are award, few applications at urban scale (street and district scale)

2 – Brief description of the SIRANE model

Soulhac, L., Perkins, R. J. et Salizzoni, P., 2008. *Flow in a street canyon for any external wind direction*, Boundary Layer Meteorology, Volume 126, Issue 3, 365-388.

2 – Brief description of the SIRANE model Street canyon model

Budget of pollutant fluxes within the street

2 – Brief description of the SIRANE model

Other physical and numerical aspects

Physical processes

- Exchanges in intersections
- Flow and dispersion above the roof level
- Chapman NO_x chemical model
- Plume rise model
- Dry and wet deposition

• Example of the Lyon city results

- Domain: 36 km x 40 km
- Resolution: 10 m
- 21922 streets/roads
- 15 h for 1 year (144 threads)

2 – Brief description of the SIRANE model

References and validation studies

Flow in the street canyon

- Soulhac et al., 2008
- Soulhac and Salizzoni, 2010
- Flow at the intersection
 - Soulhac et al., 2009
- Exchanges by turbulent diffusion at the street-atmosphere interface
 - Salizzoni et al., 2011
 - Soulhac et al., 2013

Wind tunnel validation studies

- Carpentieri et al., 2012
- Ben Salem et al., 2015
- Real case validation study
 - Soulhac et al., 2012

3 – Source apportionment (SA)

Issue

Issue

Implementation in the SIRANE model

Passive species

- Linear phenomena
- Tagged species approach

• Reactive species

- Non-linear phenomena
- Difficult problem
- Koo et al. 2009 : "there is no true apportionment to which all methods can be compared"

Chemical reactions in the SIRANE model

- Chemical reactions
 - Chapman cycle

$$\begin{cases} \mathsf{NO}_2 + \mathsf{hv} \xrightarrow{k_1} \mathsf{NO} + \mathsf{O}^{\bullet} \\ \mathsf{O}^{\bullet} + \mathsf{O}_2 \xrightarrow{k_2} \mathsf{O}_3 \\ \mathsf{NO} + \mathsf{O}_3 \xrightarrow{k_3} \mathsf{NO}_2 + \mathsf{O}_2 \end{cases}$$

• Assumption: Photo-stationary dynamic equilibrium

$$NO+O_3 \longrightarrow NO_2+O_2$$

$$\frac{k_1}{k_3[O_3]} = \frac{[NO]}{[NO_2]}$$

• Remarks

- Chemical reactions are implemented after the dispersion step
- [E^d]: molar concentration of the specie E before chemical reactions
- [E]: molar concentration of the specie E after chemical reactions

Treatment of the chemical reactions

Global approach

ÉCOLE CENTRALELYON

- <u>Assumption</u>: All the molecules of a specie have the same probability of reacting regardless of their source
- <u>First step</u>: chemical reactions are applied without distinction of the different source groups
- <u>Second step</u>: the source contributions are estimated as a fraction of the total concentration

Treatment of the chemical reactions

CENTRALELYON

- Method 1 (M1)
 - Assumption: $\left(\frac{\left[NO^{d} \right]}{\left[NO_{2}^{d} \right]} \right) > \left(\frac{\left[NO \right]}{\left[NO_{2} \right]} \right)$
 - The chemical reactions can be simplified as: $NO+O_3 \rightarrow NO_2+O_2$
 - The production of NO_2 and the consumption of NO and O_3 for the source g is function of $[NO^d]_g$:

$$\left[\mathsf{E}\right]_{g} = \left[\mathsf{E}^{d}\right]_{g} + \left(\left[\mathsf{E}\right] - \left[\mathsf{E}^{d}\right]\right) \frac{\left[\mathsf{NO}^{d}\right]_{g}}{\left[\mathsf{NO}^{d}\right]}$$

Remarks on M1

- The contribution can negative
- A source must emit NO to contribute to [NO]

Treatment of the chemical reactions

CENTRALELYON

Method 2 (M2)

- Considering: $NO+O_3 \leftrightarrow NO_2+O_2$
- Assumption: The total source contribution for the NO_x (NO and NO₂), species is equal before and after the chemical reactions and the contribution is similar (proportionally) for each specie after the chemical reactions

$$\left[\mathsf{E}\right]_{g} = \left[\mathsf{E}\right] \frac{\left[\mathsf{NO}^{d}\right]_{g} + \left[\mathsf{NO}_{2}^{d}\right]_{g}}{\left[\mathsf{NO}^{d}\right] + \left[\mathsf{NO}_{2}^{d}\right]}$$

• Remarks on M2

- The contribution are only positive
- Regardless the emitted species, a source contribute to [NO], [NO₂], and [O₃]

Application: estimate the source contribution

Application: estimate the source contribution

Contribution to the NO₂ annual mean concentration at the measurement station (left and right column refer respectively to the method 1 and 2)

4 – Application for "data assimilation"

4 – Application for "data assimilation" Principle

• Aim: Correct the emissions to improve the model estimation by multiplying the contribution with a coefficient

Measurement

SA-LS

 $\text{SP x}\,\alpha_{\text{SP}}$

Surf x α_{surf}

Trafic x α_{Trafic}

Fond x $\alpha_{\mbox{\tiny Fond}}$

Х

60 -

Concentration 50

0

4 – Application for "data assimilation" **Algorithm (SA-LS)**

The total concentration is the sum of the source contributions

• The
$$\alpha_g(t_n)$$
 coefficients are calculated at each time step minimizing the J_n quantity

 $\hat{C}(s_i,t_n) = \sum_{i=1}^{G} \alpha_g(t_n) C_g(s_i,t_n)$

$$J_{n} = \frac{1}{m} \sum_{i}^{m} \left(C_{mes}(s_{i}, t_{n}) - \sum_{g}^{G} \alpha_{g}(t_{n}) C_{g}(s_{i}, t_{n}) \right)^{2}$$

CENTRALELYON

4 – Application for "data assimilation" Application

CENTRALE LYON		Bias [µg.m ⁻³]	RE	RMSE [µg.m ⁻³]	Corr
	Expression	$\overline{C_m - C_p}$	$\overline{\left(\frac{\left C_{m}}{-}C_{p}\right }{C_{m}}\right)}$	$\sqrt{\left(C_{m}-C_{p}\right)^{2}}$	$\frac{\overline{\left(C_{m}},\overline{C_{m}}\right)\left(C_{p}},\overline{C_{p}}\right)}{\sigma_{m}\sigma_{p}}$
	SIRANE	3.51	0.48	20.68	0.69
16 lere	SA-LS	0.30	0.43	18.15	0.80

SIRANE

4 – Application for "data assimilation" Application

CENTRALE LYON		Bias [µg.m ⁻³]	RE	RMSE [µg.m ⁻³]	Corr
	Expression	$\overline{C_m - C_p}$	$\left(\begin{array}{c} \left \mathbf{C}_{m} - \mathbf{C}_{p} \right \\ \hline \mathbf{C}_{m} \end{array} \right)$	$\sqrt{\left(C_{m}-C_{p}\right)^{2}}$	$\frac{\overline{\left(C_{m}},\overline{C_{m}}\right)\left(C_{p}},\overline{C_{p}}\right)}{\sigma_{m}\sigma_{p}}$
	SIRANE	3.51	0.48	20.68	0.69
16 lere	SA-LS	0.30	0.43	18.15	0.80

SIRANE

5 – Conclusions and perspectives

5 - Conclusions and perspectives

CENTRALELYON

Source apportionment

- Development of source apportionment module in the SIRANE urban air quality model
- Two different approaches to handle the chemical reactions
- Application for "data assimilation"
 - Least square problem
 - Can improve the global estimation of the SIRANE model

• Perspectives

• Comparison of the application for "data assimilation" with other assimilation techniques (see the poster H17-178)

Questions?

