Preliminary Analysis of Observations from the Jack Rabbit II-2015 Field Experiment on Dense Gas Dispersion in a Built Environment

Steven Hanna¹, Joseph Chang², Thomas Spicer³, Michael Sohn⁴, Shannon Fox⁵, Mark Whitmire⁶, Leo Stockham⁷, Damon Nicholson⁸, Thomas Mazzola⁹

¹Hanna Consultants, Kennebunkport, ME; ²Homeland Security Studies and Analysis Institute, Falls Church, VA; ³Univ Arkansas, Fayatteville, AR; ⁴LBNL, Berkeley, CA; ⁵DHS S&T Chemical Security and Analysis Center (CSAC), Aberdeen Proving Ground, MD; ⁶Noblis, Falls Church, VA; ⁷Leidos, Albuquerque, NM; ⁸Dugway Proving Ground, UT, ⁹Engility, Lorton, VA

HARMO 17, Budapest, Hungary, 9-12 May 2016

Paper H17-186

JR II Cloud, Trial 5, looking toward south (upwind) 0.5 sec after release starts

Movies & TV

Side to side dimension of obstacle array = 100 m

Jack Rabbit II – Follow-on to JR I

- JR I 10 trials in 2010, releasing 1 or 2 tons of pressurized liquefied chlorine or anhydrous ammonia. Mostly light winds, downward release into artificial 2 m deep by 25 m radius depression. Downwind C observations to 500 m.
- JR II 5 trials in 2015, releasing 5 to 9 tons of chlorine. Moderate winds, downward release in middle of mock urban array. Downwind C observations to 11 km, and inside some buildings.
- Planned JR II 2016 10 to 20 tons released over flat desert surface (same location as 2015 but with mock urban array removed). 7 trials planned with a variety of release orientations.

JR I and Lyme Bay observed Cu/Q_c versus x. C is one-min avg arc max, u is wind speed, and Q_c is mass emission rate.

Summary of JR II - 2015

Trial		1	2	3	4	5
Release (MDT, = UTC-6)	Date	8/24/2015	8/28/2015	8/29/2015	9/1/2015	9/3/2015
	Start Time	7:35:45	9:24:21	7:56:55	8:38:50	7:28:19
	Duration (sec)	30	60	30	45	60
Release Amount (kg)		4,518	8,168	4,521	6,985	8,321
AVG PWIDS Wind Direction (deg)		147	158	170	184	183
AVG PWIDS Wind Speed (m/s)		1.9	4.3	4.0	2.3	2.8
AVG PWIDS Temperature (C)		17.7	22.7	22.6	22.6	22.2

Plume behavior

- The powerful jet release lasted about 1 min, and evaporation from the concrete pad had mostly ended after 5 min
- The initial powerful momentum jet goes 50-100 m in all directions, "splashes" against obstacles; therefore depth is about 2-3 m.
- Travel time to farthest (11 km) arc is about 1 or 2 hrs. Shallow (10-20 m deep) yellow cloud visible out to 500 m.
- Max C is proportional to x^{-5/3}

JR II Concentration Samplers - Far

JR II Concentration Samplers - Mid

Mock Urban Layout for Trials 2-5

LEGENDS

JR II 2015 Near-**Field Mock Urban Layout**

Shows source, concrete pad, **CONEXs**, ER vehicles and C sampler locations (JAZ, Canary, MiniRae)

Lambda-p~0.18

C: Canary, M: MiniRAE, B: bottom, T: top, L: lee side

Portable Weather Instrumentation Data System (PWIDS) on a Tripod (z = 2 m)

10 ton Tank used for Chlorine Releases

Small Trailer used for Indoor Study

JR II Trial 2, 4.3 sec after the release starts

Movies & TV

Pre JR-II Exp Model Outputs 10 ton

At 60 seconds, 0.3 m AGL

Figure by J. Boyd and T. Mazzola

(S. Bereznicki)

MSS

>1,000,000

>100,000

>10,000

>1000

>100

>10

800

AEOLUS at

Gowardhan)

30 s (A.

100

200

200

400

3

>10

800

200

200

4

AEOLUS at 300 s (A. Gowardhan)

IIBR (H. Kaplan)

600

400

600

RAILCAR/QUIC (M. Morad)

Modeled versus Observed Cloud in Urban CONEX array

- Some models on the previous page suggest a horseshoe-shaped cloud, with a dip in C at the cloud center at x > 50 m. This is because much of the mass initially spread past the side edges of the CONEXs, and then moved downwind at a faster speed over the open desert.
- JR II concentration observations verified the above model expectations

Observed JR II 2015 arc max 1 sec avg Cu/Q (m⁻²) vs x (m). Line is -5/3 power law fit.

Summary of preliminary analysis

- Data are archived on DHS CSAC HSIN website
- Arc max Cu/Q is proportional to x^{-5/3}, close to what is seen in earlier graph for JR I and LB
- Cross wind and vertical C distributions look reasonable and consistent with previous experiments and model expectations
- Time variations of C inside trailers are consistent with expected air exchange rates
- More powerful initial jet than expected, with less rainout (liquid deposition around source), 2-3 m vertical mixing when hitting CONEXs

A Few Limitations

- Not enough concentration samplers for the high range (C > 10,000 ppm).
- Difficult to measure vertical profiles.
- Aerosol observations have problems because the proportions of chlorine, ambient water, and ambient dust cannot be distinguished.
- Limited deposition measurements despite knowledge that deposition of chlorine is relatively large.

Next Steps

- Data are archived on DHS CSAC HSIN website
- JR II scientists are currently analyzing the data.
- 2016 JR II is being planned for August-September. <u>Flat terrain</u>. Will be six 10 ton and one 20 ton release. Various release angles (down, up, horizontal downwind, 45 degrees down). Will be additional indoor studies and placement of emergency vehicles.