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INTRODUCTION 
There are a number of methodologies available for assessing air quality model uncertainty. 
For the most part these involve direct comparison between models and observation. However, 
since models are generally applied to produce spatially resolving maps, even at points without 
observations, it is equally important to indicate model uncertainty as a spatial map. The 
method used and the uncertainty parameter displayed may vary between applications. 
Uncertainty maps may be used to indicate the quality of the model, to support decisions on 
the placement of monitoring sites, for data assimilation purposes or as information for 
decision makers in integrated risk assessment. 
 
Air quality models produce temporal and/or spatial concentration data based on various 
inputs. Air quality models may be prognostic, statistical or a combination of these in nature. 
Data assimilation also involves the use of Bayesian statistical methods to combine models and 
observations. There are, as a result, a large number of methods available for producing air 
quality maps and all of these have, in principle, an associated uncertainty. It is thus useful to 
use an uncertainty parameter that can be used for almost all applications and methodologies 
so that mapping uncertainties are comparable.  
 
This paper looks at uncertainty parameters and the methodologies for spatially calculating 
these in air quality models, based on experience gained in a number of case studies during the 
EU FP6 project Air4EU (www.air4eu.nl). For air quality purposes uncertainty is rarely, if 
ever, presented in the form of maps but some examples do exist. Van de Kassteele and 
Velders (2006) present maps of standard deviation and probability of exceedance for NO2, 
Fuentes and Raftery (2005) present maps of bias and standard deviation for SO2. Horalek et 
al. (2007) present maps of standard deviation derived from the residual kriging variance. To 
promote the use of uncertainty maps the Air4EU project developed a mapping tool 
(www.air4eumaps.info) that displays a number of assessment and uncertainty maps. 

SELECTION OF UNCERTAINTY PARAMETERS FOR USE IN MAPPING 
There are a number of statistical parameters used for the assessment of model uncertainty that 
may be appropriate for spatial mapping of uncertainty. These may include EC directive 
related uncertainty assessment parameters (e.g. EC, 1999) such as relative maximum error 
(RME) or its alternative relative percentile error (RPE) (Stern and Flemming, 2004).  More 
statistically based error estimates such as standard deviation (SD), root mean square error 
(RMSE), bias (BIAS) or coefficient of determination (r2) may also be applied. Discussions 
and applications concerning these can be found in Borrego et al. (2007).  
 
When considering uncertainty there are basically two different types that can be considered. 
The intrinsic model uncertainty and the predictive model uncertainty. The first of these refers 
to the models uncertainty in terms of input data, model formulation and numerical 
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description. The second type, predictive model uncertainty, refers to the models ability to 
predict a measurement made at some point in space and will include both the intrinsic 
uncertainty as well as the uncertainty due to spatial and temporal representativeness. 
Representativeness uncertainty can be large when the scale of spatial variation is smaller than 
the model resolution.  
  
For uncertainty mapping a general concept is useful. For this purpose Bayesian approaches 
using probability distributions, represented by probability density functions (PDFs), provide a 
basis for describing the uncertainty. Associated with PDFs are the typical uncertainty 
parameters of SD and BIAS that can be used to describe the uncertainty in a normally 
distributed PDF. The assumption of normal distributions is often not met and other 
distributions, such as log-normal or more general discretised distributions, may be more 
appropriate. The SD uncertainty concept may still be applied for these though the description 
is more complex. 

Relative maximum and percentile error 
The present European legislation defines the Modelling Quality Objectives as an acceptability 
measure to guarantee good model performance and reliable modelling results for decision 
makers. In this context, the uncertainty for modelling and objective estimation is defined and 
should be estimated in each air quality modelling assessment. When modelling uncertainty is 
required for directive purposes then the most relevant parameter is RPE for daily or hourly 
averages and RME for annual means, evaluated at monitoring sites (Air4EU, 2007; M2).  

Standard deviation 
In general it is recommended to use uncertainty parameters that are indicative of the SD of the 
assessment uncertainty. This uncertainty indicator is thus useful because it is similar to other 
uncertainty parameters that may be calculated such as RMSE, kriging variance, SD resulting 
from Monte Carlo ensembles, or covariance matrices required for data assimilation 
techniques. However, SD is a good uncertainty indicator only when the system is unbiased. It 
is thus also useful to indicate uncertainty in maps using bias as well. 

Bias 
Bias can be directly calculated at observational points or interpreted from linear regression. 
Bias can be removed from models by regression or spatially through optimal interpolation or 
kriging techniques. Though the mapping of bias may be useful for understanding the model 
system it is recommended to try to remove bias, through one of these methods, or through 
improvements in the model description. 

Probability distribution functions 
In their most general form PDFs can be used to indicate uncertainty. When the PDF is 
normally distributed then this can be replaced by the uncertainty parameters of SD and BIAS. 
This will generally not be the case so it is possible to construct discrete PDFs based on direct 
comparisons with observations. This is achieved by calculating the relative frequency 
distribution, i.e. by binning the ratio of observed to modelled concentrations (O/M). These 
discrete PDFs can be used to estimate confidence intervals, SD or probability of exceedance.  

SPATIAL DISTRIBUTION OF THE UNCERTAINTY PARAMETERS 
In this section methodologies are described that will allow the spatial representation of the 
uncertainty with emphasis on the representation of SD.  
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Indicative uncertainty maps  
This type of uncertainty map treats the spatial uncertainty, using SD as the uncertainty 
parameter, as a function of the absolute uncertainty σA, the relative uncertainty σR and the 
model concentration M(x,y) in the following form 
 

222 ),(),( yxMyx RAM σσσ +=  (1) 
 
The estimated values of σR and σA may be calculated in various ways, e.g. based on 
experience with the model, based on the normalised RMSE, based on the SD of PDFs or by 
fitting equation 1 to scatter plots representing SD as a function of model concentration. 
 

  
Figure 1: Example of an assessment (left) and uncertainty map (right) of the annual mean 
NO2 concentrations in Prague, 2003 (Air4EU, 2007; D7.1.6). The uncertainty map is 
constructed using σR based on the normalised RMSE of 12 stations where σR = 27%.  

Spatial representation of model error 
When model assessment is carried out at spatially distributed monitoring sites, model error 
can be determined at these points. This error may be represented as points on the map or, 
when there is a sufficient density of stations and the pollutant varies on scales larger than the 
typical distance between stations, it may be interpolated to represent the spatial uncertainty of 
the model. Such an interpolation will tend to reflect the spatial positions of the stations.  
 

Spatial mapping of RPE for O3
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Figure 2: Mapping of RPE of an O3 simulation (concerning the 26th maximum 8h running 
average percentile) with the RGC model over Berlin (Air4EU, 2007;D7.1.14). Left: RPE at 
the 49 individual monitoring sites is represented by the size of the circles. Right: RPE is 
interpolated using kriging in the same domain. 
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Maps based on data assimilation, statistical and kriging variance 
When data assimilation or other statistically based methods are used, for example linear 
regression analysis, residual kriging, variational methods or ensemble techniques such as 
Ensemble Kalman filters, estimates of the variance/covariance are required for the 
assimilation technique and can be used in the uncertainty maps.  

Accounting for temporal covariance in uncertainty mapping 
For many modelling and data assimilation applications uncertainty may be calculated on a 
higher temporal resolution, e.g. hourly or daily, than the final assessment, e.g. annual, 
requires. To estimate the total uncertainty of the assessment based on the individual hourly or 
daily spatial uncertainty, the temporal covariance matrix must be determined. Such an 
assessment was carried out for PM10 in Europe (Air4EU, 2007; D7.1.13) where the temporal 
covariance was found to be extremely important for the final uncertainty assessment, due to 
similar meteorological conditions that lead to correlated concentration distributions.  

Accounting for spatial representativeness in the uncertainty mapping of exceedances 
For some applications the number of exceedances (NOE) above some threshold value is 
required. In order to represent the spatial uncertainty in the NOE a pragmatic approach is 
recommended since aspects related to bias may be involved. The uncertainty in the NOE is 
calculated by use of the annual mean SD percentile band, i.e. by adding and subtracting the 
annual mean SD from the daily mean value (±σ), which reflect the model and 
representativeness bias. The uncertainty in NOE days can be interpreted as being the 
maximum deviation, in number of days, from the ±σ calculations (Air4EU, 2007; D7.1.13). 
 

    
Figure 3. European map of the assimilated (left) and uncertainty (right) fields for the number 
of daily mean exceedances of PM10 above a threshold of 50 µg/m3, 2003. The uncertainty is 
calculated using the annual mean percentile band (Air4EU, 2007; D7.1.13). 

Model uncertainty using Monte Carlo simulations  
Another method for estimating uncertainty is to carry out ensemble runs by perturbing model 
parameters and input data (within their uncertainty) to obtain estimates of the intrinsic model 
uncertainty (e.g. Air4EU, 2007; D7.1.4). This can be carried out using various Monte Carlo 
methods where the PDFs of the model parameters are used as prior distributions for the 
ensembles. This will give a spread of model results that can be mapped. It will not provide 
information on bias unless direct comparisons are made with observations. As a special case 
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of the Monte Carlo methods some uncertainties can be analysed in a simpler framework. If 
input parameters, such as emissions, can be simply described by a normal distribution and the 
model is linear, then the uncertainty can be calculated by simply summing the uncertainties 
from the various emission sources. 

Probability of exceedance 
Given both concentration and uncertainty fields, as PDFs or in terms of SD, it is possible to 
determine the probability of exceedance (POE), given some limit value (LV), by integration 
of the PDF. POE can be seen as a parameter that includes both calculated concentrations and 
uncertainty information in the one parameter and may be useful in applications for risk 
assessment. POE is not an uncertainty parameter and a POE map does not show to what 
extent the map is determined by the model concentrations or the model uncertainty.  

CONCLUSIONS 
A number of methodologies for producing uncertainty maps are briefly described. The 
methods used are dependent on the methodology applied for the creation of the assessment 
map itself. It is recommended that standard deviation be the major indicative uncertainty 
parameter in the uncertainty maps. How this is mapped can vary. It can be based on the 
spatial distribution of the uncertainty, on a functional relationship with concentration through 
regression or derived by Monte Carlo simulations. Whatever the method applied, an 
uncertainty assessment of the derived air quality map should always be provided in some 
form. 
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