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INTRODUCTION 
Although much progress has been made in the development of three dimensional 
computational fluid dynamic (CFD) models of turbulent flows in urban streets, their 
evaluation with respect to relevant field and laboratory data is less common. Since the models 
usually include parameterisations of some important features, their evaluation benefits from 
the inclusion of sensitivity studies that highlight the impact of uncertain input parameters on 
predicted flow fields. It is fair to say that using current resources, operational CFD models are 
more likely to employ a RANS (Reynolds Average Navier Stokes) approach than more 
computationally expensive eddy-resolving models such as Large Eddy Simulation (LES).  
However, in order to model the flow and turbulence within complex geometries, a RANS 
model needs to make many assumptions. Close to a surface the turbulence needs to be 
modelled using boundary conditions that reflect the surface roughness. For many k-e models 
these boundary conditions use an idealised empirical relationship known as the log law. This 
assumes that the boundary grid point is within a region that has conditions similar to that used 
to derive the log law, such as a logarithmic velocity profile and constant shear stress. This 
assumption may not be true over urban areas where the surface is non-homogeneous and wind 
profiles are a result of the interaction of the background flow with many different surface 
types. Apart from the uncertainties due to the input parameters, the model physics may be 
based upon assumptions that are not correct in many situations, such as using isotropic eddy 
viscosity in k-e models. Overall model evaluation should therefore also contain elements of 
comparison with measured results. This paper presents both uncertainty and sensitivity 
analysis combined with comparisons to experimental results.  A description of methods used 
in the evaluation of CFD models for urban-scale flow and dispersion studies has been referred 
to in the companion paper, Ziehn & Tomlin (2007). This paper aims to link the results of such 
sensitivity analysis to the physical aspects of the model behaviour. 
 
MODEL 
The model used for this study is the k-e model MISKAM (Eichhorn, 1996) as introduced in 
Ziehn & Tomlin (2007). Dixon et al. (2006) provided a crude sensitivity analysis of 
MISKAM outputs to inflow roughness length, but a full global uncertainty and sensitivity 
analysis was not given, prohibiting the investigation of the sources of discrepancy between 
the modelled and experimentally measured flow field. The aim of this work is to explore 
whether the sources of such discrepancy can be attributed to parametric uncertainties in the 
main inputs of the model, or imply problems within the description of the model equations. 
 
The model consists of 3D RANS equations, with wall boundaries using the law of the wall (1) 
and a no slip condition (i.e. zero velocity at the wall): 
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where z0 is the surface roughness length, u* is the friction velocity, z is height above a surface 
and κ is the Von Karman constant. One difference from the standard law of the wall is that (1) 
uses z+z0 instead of simply z. This is because if the height of the first grid point is the same as 
the roughness length then the log law cannot be applied. As the log law requires constant 
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Reynolds stresses for its derivation, equilibrium between turbulent kinetic energy (TKE) 
production and dissipation is assumed. At the boundary grid point, k and e are found using;  
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combined with (1), where Cµ=0.09. MISKAM initialises with a one-dimensional inflow 
profile. This is calculated using the inflow surface roughness length to calculate bottom 
boundary grid point k and e values using (1)-(3). The k-e model is then iteratively solved in 
one-dimension to give velocity, TKE, and dissipation inflow profiles. This 1D profile is 
initially applied horizontally across the entire model domain. Boundary values of k (2) and e 
(3) can now be calculated for all surfaces, followed by k and e equations being solved across 
the entire model domain. This is followed by calculation of wind components. The resulting 
outputs represent time averaged quantities.  
 
MODEL SCENARIO 
The location modelled in this study is that of Gillygate, York, the site of an extensive 
measurement campaign (Boddy et al., 2005a, 2005b) that provides observations which can be 
compared to the output of the MISKAM model. A full description of the model scenario was 
given in the companion paper Ziehn & Tomlin (2007). Gillygate is a narrow street canyon of 
width ~15m with two and three storey buildings on each side of typical height 10-12m. There 
are two measurement points, G3 and G4, allowing comparison of full scale measurement 
results with the model output. They are situated at heights of 5.5m (G3) and 5.7m (G4). G3 is 
2m from the wall while G4 is only 1m from the wall. The cross sections presented in this 
paper are taken across the x-z plane intersecting G3 and G4 (y=211m). Background wind was 
measured at a mast location at a height of 19.5m.  
 
SENSITIVITY ANALYSIS 
Sensitivity analysis shows how a model output changes according to the model inputs. Thus 
the overall uncertainty of the model may be associated with the individual uncertainty in each 
model input. Here, global methods based on random sampling Monte-Carlo techniques (RS-
MC) and random sampling high dimensional model representations (RS-HDMR, Rabitz et al., 
1999) have been used to perform uncertainty and sensitivity analysis. As demonstrated in 
Ziehn & Tomlin (2007), the HDMR method allows the calculation of each parameter’s 
contribution to the overall output variance, based on its given range of input values.  
 
As in Ziehn & Tomlin (2007) there are four main input parameters included in this sensitivity 
study of the MISKAM model. They are the surface roughness (0.5-50cm), inflow roughness 
(5-50cm), wall roughness (0.5-10cm) and background wind direction θ±10°. The input ranges 
chosen are indicated in the brackets. θ is varied in this study to show how large an effect 
miss-specifying a reference wind direction may have if comparing the model to full scale 
measurements. In practice this is likely to be an uncertain parameter since the background 
wind direction may be measured far away from the measurement site or may be obtained 
from a model forecast. The sensitivity index for θ will determine the effect of such practical 
limitations on the predicted model output. The random sampling Monte-Carlo method 
generated random samples from across the input parameter ranges. The model was then run 
repeatedly using each of these random samples. The HDMR method uses quasi random 
sampling (RS) as described in Ziehn & Tomlin, (2007) with 1024 model runs used for each 
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wind angle. The outputs examined in this paper are the TKE (k) and mean wind speed 

( 222 wvuU ++= ). 
 
To obtain the contribution of each input parameter to the overall output uncertainty we 
compare both Pearson and Spearman ranked correlation coefficients from the RS-MC results 
to RS-HDMR sensitivity indices. By applying a linear regression fit to the output from the 
RS-MC method for a given input, the Pearson correlation coefficient can be calculated. 
Because the Pearson coefficient is only a measure of the linear response, the Spearman ranked 
correlation (rsp) method is also used. This allows the correlation of any monotonically varying 
output to be estimated. The square of the correlation coefficient (r2) is equivalent to the 
fraction of the total output variance explained by a first order linear effect for that parameter. 
 
RESULTS 

 
Fig. 1; G3 TKE/Um

2 experimental 15 minute averages in comparison with model results. The 
error bars on the experimental data are the standard deviations from the mean. Crosses - 

coefficient of variation for the model results.   
 
Using 10000 runs across all θ, comparisons of model and full-scale experimental results at 
measurement point G3 are presented in Figure 1. The experimental data are 15 minute 
averages from the field campaign (Boddy et al., 2005a) grouped into 20º bins. The model data 
includes all the uncertainty in the model input parameters. For any particular θ the scatter 
around the mean can be considered the uncertainty in the models predictions due to the 
various roughness input parameter uncertainties. Taking these into account, the modelled 
TKE at G3 shows good agreement with the experimental results between 0 and 190 degrees 
(Figure 1). Due to the effect of the tree near the mast, the experimental data between 195 and 
270 degrees is not shown (Dixon et al., 2006) since it affects the normalisation of the data. 
Figure 1 also shows that the model output variability is fairly small in comparison to the mean 
model output, since the coefficient of variation (standard deviation divided by mean) for all θ 
is below 0.4 at G3. The largest variations in normalised TKE are due to bulk changes in 
background wind direction θ. The choice of background wind angle range is therefore 
important when interpreting the results from the angle specific sensitivity tests. Its relative 
importance as an input parameter is expected to be dependant on its chosen range. 
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Table 1. Sensitivity of U at G3 to each parameter given by Pearson, Spearman ranked 
correlation coefficients and RS-HDMR first order sensitivity indices for θ = 90±10°. 

 Pearson correlations Spearman Ranked Correlations HDMR first order 
  r r2 rsp rsp

2   
surface roughness -0.4924 0.2424 -0.4917 0.2417 0.2833 

wall roughness -0.1846 0.0341 -0.1968 0.0387 0.0491 
inflow roughness -0.1747 0.0305 -0.1651 0.0273 0.0359 
wind direction (θ) -0.7610 0.5791 -0.7570 0.5731 0.6438 

total  0.8861  0.8808 1.0121 
 
Table 1 shows the sensitivity of U at G3 to each input parameter for θ = 90±10°. The 
differences in the sensitivity results using the Pearson and Spearman correlation coefficients 
compared to the HDMR 1st order sensitivity indices can be explained by the nonlinearity in 
the output response. The HMDR method gives a more accurate representation of the overall 
response to the input parameter than either of the two correlation methods across the whole 
input range. Since the 1st order sensitivity indices sum to almost 1, this suggests that the 
responses to parameter changes for this output are nonlinear, but that there are no significant 
second order effects i.e. parameter interactions. It is worth noting that the overall importance 
ranking of the main parameters is captured by the correlation methods, with θ showing the 
highest influence on the output variance as indicated in the discussion of Figure 1. In addition, 
the use of the Pearson coefficient allows interpretation of the overall sign of the linear 
response and so aids the physical interpretation of the results. For this reason, the Pearson 
coefficient is used in the cross-sectional analysis within this paper. However, it should be 
pointed out that if the nonlinear response is required in any part of the model domain it can be 
provided by the HDMR component functions at each specific point. 
 
Figure 2 shows the un-normalised TKE Pearson coefficient cross-sections for θ=90±10º for 
each input parameter. The surface roughness length has a strong influence on TKE close to 
the surface grid points, but its influence does not extend very far into the canyon above. The 
slight negative influence on TKE at the leeward wall surface is due to the lower wind speeds 
at the surface that occur for higher surface roughness. The wall roughness length has a strong 
positive effect on TKE for the boundary grid points above roofs and on the windward facing 
wall, due to application of the log law (1) and boundary condition (2). This positive influence 
on TKE near the windward wall is accompanied by a negative effect on the mean wind speeds 
(Table 1) within the canyon as more of the mean kinetic energy is converted into TKE.  The 
effect of inflow roughness on TKE is dominant above the roofs, but extends into the upper 
part of the canyon. Its relative influence is high in the region where the coefficient for wall 
roughness changes sign. This sensitivity to inflow boundary conditions may not be considered 
as a positive feature of the model since it may indicate the need for a larger upwind model 
domain. However, the low overall variance of the model results suggests that the absolute 
effect of its input uncertainties may not be particularly large. 
 
CONCLUSIONS 
Cross-sections of output sensitivities to model input parameters show them to be highly 
location dependant. This indicates that for comparisons with field data, it is important to 
accurately place buildings and measurement points in the model to get the best approximation 
of the full scale situation. If a measurement point is close to a surface boundary, the results 
are very dependant on the correct use of the boundary conditions. Overall it is θ that 
determines which surfaces are encountered and so over large wind angle changes it usually 
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has the largest magnitude effect on the model output. This suggests that accurate specification 
of the background wind direction using an appropriate reference point is required in order to 
accurately model in canyon flow and turbulence for a particular model scenario.  

 
Fig. 2;  TKE Pearson correlation coefficient cross section at θ=90 ±10 degrees for input 
parameters; (a) surface roughness length, (b) wall and roof roughness length, (c) inflow 

roughness length, (d) wind direction. Dashed lines indicate negative correlation coefficients. 
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